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Abstract

Optimization of junction layouts in network can improve the functionalities of the network to a

large extent. A suitable and reasonable Traffic and Patrol Police Service Platforms setting and

scheduling can compactly increase the city’s resilience against unexpected accidents. However,

given the existing city network geographic profile, it is often hard to evaluate the best possible

layout scheme for all TPPSPs. We propose, adapt, formulate and test the Distribution

Optimization Model (DOM) which incorporates all the considerations in Evaluation Schema.

DOM satisfactorily decides the optimal layout of TPPSPs in the city [8]. We also formulate and

compare three models to tackle the matching problem between TPPSPs and Access Arteries,

Greedy Method, Stable Marriage Matching with Indifference [6] and Hungarian Algorithm

Method. The synthesis of the three methods gives us valid and sufficient information about the

matching between TPPSPs and Access Arteries. We also construct Marginal Network Circle

Model with Inductive Reasoning (MNCMIR), in which model real-life scenarios are mimicked

and best strategy which have the highest expectation of success rate are picked by comparing

experimental data . The testing results of our models show that DOM is robust with internal

parameters and is able to determine the best TPPSP layout for the whole city when combined

with greedy method. Hungarian Algorithm in general provides the best matching scheme

between TPPSPs and Access Arteries. MNCMIR also gives the strategy of guaranteeing

catching the criminal. Our modification to MNCMIR even accelerates the whole process. We

conclude the methods we propose above comprises of a robust, stable and effective model.
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Chapter 1

Problem Statement

1. Allocate the jurisdiction region for each TTPSP so that the police can arrive

at the locale in time in case of emergency.

2. Match Access Arteries with TPPSPs in case of emergency.

3. Evaluate the reasonableness of the current network layout.

4. When a major criminal is reported to the police to have run by car 3 minutes

after he leaves the scene of the crime, location P, we must find an optimal

strategy which could make the police arrest the criminal as quickly as possible.
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Chapter 2

Assumptions

• The velocity of vehicle is constant and other physical factors, like acceleration and friction,

are not taken into consideration.

• The police and the criminal use the vehicles of the same kind.

• Traffic lights and toll-gates are omitted.

• Traveling from a junction to another junction can only made possible by car instead of by

air, by train or by feet.

• The police force of every TPPSP is modeled as a normal distributed random variable by

empirical data.

• Administrative area for each TPPSP is the circular area with centre TPPSP with radius

being the place it can reach within 3 minutes. Other areas could be included as the

jurisdiction region of each TPPSP, but they are not preferable.

• Assume everyone,including both the police and the criminal, is rational. That is to say,

traveling from point A to point B, everyone will choose the shortest path.

• Assume that the city’s geometry is Euclidian.
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Chapter 3

Methodology

3.1 Basic Idea

In our assumptions, the only way to commute between two junctions is through transportation

network, namely roads. Therefore, the method we adopt to simulate the situation is using Di-

jkstra’s Algorithm which is used for finding shortest path in a given graph. We use the variant

version of this algorithm which allows the road capacity to be rational. The graph below repre-

sents all the shortest path between any two junctions in the given city.

• In order to solve the problem of distributing TPPSP among the city junctions, we quantify
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the ability of a TPPSP using the notion of “Police Force”. Then the problem is reduced to

the distribution problem. Since we model each arc of the network stochastically incorpo-

rating other uncertainties such as road conditions, car conditions, weather conditions and

so on. Therefore the model is actually analogous to solving a distribution problem with

arc of random costs [4].

• Next, we propose a strategy for the blockade of Access Arteries when emergency happens.

The blockade scheme often restricts one TPPSP to one Access Artery since blockade is the

continuous effort which requires continuous attention. Three models are proposed, Greedy

Method, Stable Marriage with indifference and Hungarian Algorithm. Comparisons are also

made among different models in order to produce the most feasible and efficient strategy

in the case of emergency.

• We also formulate a model to catch a criminal given the crime spot. The time needed for

propagation of information is negligible in this instance. The model makes use of semi-

agent-based simulation, which gives the criminal ability to reason given the information

attainable. Our Marginal Network Circle Model with Inductive Reasoning (MNCMIR)

mimic the process of learning by trial and error based on the simulation result.

• After validating all the models, we implement the simulation methods to get experimental

results. This is the last step to verify theoretical prediction and model formulation.

3.2 Softwares used

3.2.1 Primary software used

Matlab, to program, to process data and to generate diagram.

Java, to program.

R, to process data and to generate matrix to be used in Matlab.

Microsoft Excel, to present data neatly and nicely.

3.3 Definition of Variables

In the first part of the report, we first analyze the current structure and layout of the Traffic and

Patrol Police Service Platforms (TPPSPs). We define the following parameters as the measures

for our evaluation.

• G(E, V ): The given map of the city in which E stands for the set of all roads and V

represents the set of all junctions.

• O: The set of all junctions.

• A: The set of Access Arteries.
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• T : The set of TPPSPs.

• Oi: Junctions, i ∈ N .

• Ti: Traffic and Patrol Police Service Platforms junctions,TPPSPs, i ∈ N .

• Ai: Access arteries, i ∈ N .

• di: Density of the ith TPPSP.

• TI : set of indexes representing TPPSPs.

• CI : set of indexes representing junctions.

• Ri : police force of a certain TPPSP (To illustrate the newly introduced variable, Ri is

measured by the decrement of accident rate caused by TPPSPi. In our case, we model Ri

as N(µ, σ) where µ is the mean of police force).

• cij : distance cost from Ti to Oj .

• xij : amount of police force in Ti to Oj .

• rk : the accident rate in Ok.

• zk : the decrement of accident rate because of TPPSPs in Ok.

• pk : penalty cost per unhandled accident in Ok.

3.4 Evaluation Schema

The evaluation scheme is based on the following considerations:

1. For each Ti, based on the computed value of di, given the thresholding and capping overlapping

rate f(di) and g(di), if di ∈ (f(di), g(di)), we do not add penalty points, otherwise we add

Punit1 · h(f(di)− di, di − g(di)) to total penalty P , where

h(x, y) =

x, if x ≥ 0 and y < 0

y, if x < 0 and y ≥ 0.
(3.1)

The rationale for this penalty requirement is that given a certain district, if the density,

which is the indication of how likely some accidents are to occur, is huge, then the police

force required in that district should be increased accordingly. Since if some accidents occur

simultaneously, one TPPSP will not be able to take care of the accidents in all the district.

Therefore, the degree of overlapping in terms of the radiated area of TPPSPs should also be

big. Note that the cap is to ensure that the overlapping is not too big such that it causes

wastes of resources.
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2. Police should arrive at where the emergency happens as soon as possible. Therefore, we first

assign the circular area each centered with TPPSP and radius within the reasonable distance

to each TPPSP as part of there jurisdiction area. However we find that there are still some

intersections not covered by any TPPSP. In our evaluation schema, the more such kind of

uncovered TPPSPs there are, the more penalty points will be added.The penalty we add is

pk ·
n

N
, (3.2)

where n stands for the number of uncovered intersections and N stands for the number of all

the intersections.

3. After matching each Access Artery with TPPSPs (details of matching implementation will

be provided in the following sections with three methods), we compute the total time treach

required for each TPPSP to reach the Access Artery. We add w · n · treach to P , where n is

the normalized parameter and w ∼ N(1, σ) which counts for the uncertainty of environmental

conditions during the process.

The rationale for this criterion is if the layout of the TPPSPs in the city is such that it takes

a long time for them to reach Access Arteries, the possibility of a city being susceptible to

certain unexpected accidents will be high.
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Chapter 4

Problem Solving Models

4.1 Distribution Optimization Model

Given the evaluation criteria enumerated above, we adapt the algorithm for solving distribution

problems [4] for our instance.

Deterministic Parameters

• Ri : police force of Ti (To illustrate the newly introduced variable, Ri is measured by

the number of accidents that can be handled by a TPPSP. In our case, we model Ri as

N(µ, σ)).

• cij : distance cost for Ti to take care of a Oj

• xij : amount of police force in Ti distributed to Oj

• rk : the average number of accidents in a given Ok

• zk : the number of handled accidents in a certain Ok

• pk : penalty cost per unhandled accident in a certain Ok

Objective Function Q(x) = min{
∑

i∈TI

∑
j∈CI cij · xij +

∑
k∈CI pk(rk − zk)} is subject to the

constraints:

•
∑

j∈CI xij = Ri, i ∈ TI

•
∑

i∈TI xij = zj , j ∈ CI

• zk ≤ rk, k ∈ C

• 0 ≤ xij ≤ Ri, i ∈ TI, j ∈ CI
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cij = li,j ·Dcosti,j (4.1)

where Dcosti,j is the shortest distance between Ti and Oj , and li,j ∼ N(µ′, σ′) weighting uncer-

tainties.

An efficiency improvement to the objective function to to omit rk, since the value of rk has

no effect on our minimization process, then we rewrite the objective function as

Q(x) = min{
∑
i∈TI

∑
j∈CI

cij · xij −
∑
k∈CI

pk · zk} (4.2)

.

Note that to incorporate the “Three-Minute” constraint into the presentation of the opti-

mization formula, we will add time penalty ptime to each distance cost cij . Note that ptime can

be made arbitrarily large to enforce a TPPSP only to stick to its own “duty”! The computation

of the minimum value of the linear programs is introduced in [8] and [4], whose method, Network

Recourse Decomposition Method, makes use of the separable approximation of the given linear

programs. We simply make use of the already-derived results.

This model takes into consideration the first criteria of the evaluation scheme, namely, the

effect of overlapping jurisdiction regions. Instead of considering the effect directly, we proceed in

the indirect way. Since for every junction there is need of TPPSP, and the degree of “Police Force”

reflects the density of the region and thus the corresponding overlapping degree. The penalty

on unsatisfied demand for Police Force to each junction reflects the criteria requiring covering as

many junctions as possible. Finally and most obviously, the costs are directly associated with

the distance from TPPSPs to junctions and both of them are the minimization objectives.

Given a determined network G(E, V ), we could always compare Q(G(E, V )) to decide the

optimal layout.

4.2 Adding TPPSPs to Obtain Optimal Network

The general method to obtain an optimal Network with TPPSPs is in greedy spirit. Let q be

the number of TPPSPs in a network. We use marginal principle and greedy method to decide

whether to add another TPPSP. Let Gq be the current network already with q TPPSPs, we now

need to decide the location of adding another TPPSP in the network. Choose

Ot = maxk∈C{pk · (rk − zk)}, (4.3)

which is the junction with the highest unsatisfactory measure. After doing this, we compute the

gradient

g(q + 1, q) = Qq+1 −Qq, (4.4)

given a thresholding value gthreshold, if g(q + 1, q) < gthreshold, then we stop the process imme-

diately. Otherwise we proceed to the next iteration.
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Proceeding in this manner, it is possible to obtain the optimal layout for a given city.

The figure above depicts the re-

location of TPPSPs in district C using our proposed algorithm.

4.3 Implementation and Numerical Results

The table gives the value of the objective function for the current layout of the city. We implement

the greedy optimization algorithm to district A given the number of TPPSPs is fixed, the final

result is presented in the table. It shows the current layout of district A is not optimal. Observing

the accidents rates on the junctions that we pick, we have found the accident rates on these

junctions are relatively high. Furthermore, for junction No.58, No.81 and No.72, the original

decrement of accident rates due to the coverage of police force is less than the one-quantile of the

junction’s own accidents rate, therefore the adding of TPPSPs improves the objective function to

a certain degree. While in the current evaluation scheme, it will always decrement the objective

function when adding new TPPSP. if we pick our gthreshold as 2.5 · 10−3, which is derived by

repeated experiments, then it is not necessary to add the fifth TPPSP. The evaluation of whether

to add the fifth TPPSP depends on how we take other factors into consideration, such as the

cost of adding a TPPSP, or the potential job opportunities created by TPPSP.
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4.4 Matching Schemes

In this section, we are ready to deal with the problem of assigning TPPSPs to Access Arteries

when emergency happens. Notice the constraint that each TPPSP can only take care of an

Access Artery, we could utilize the following models to solve the corresponding problems.

4.4.1 Scheme 1: Greedy Method

For every Access Artery Ai, we search for the Tj such that

dis(Ai, Tj) = minTk∈T {dis(Ai, Tk)} (4.5)

in the whole city, then they are made into a pair. After this, we delete (Ai, Tj) from the graph.

Then we apply the same procedure to the remaining graph until there is not Access Artery left.

This method is straightforward, however, it has some vital fatalities. For example, consider the

following graph.
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4.4.2 Scheme 2: Stable Marriage Problem with Indifference

We introduce the notion of stable matching from the famous stable marriage problem[1]. To

adapt it to our use, we make use of one of the invariants of stable marriage problem[2], stable

marriage problem with indifference.

Original Problem Stable marriage problem with indifference refers to the problem where

each man or woman is indifferent among several members on his or her list. A matching is said

to be strongly stable if there does not exist a pair (m,w) (we denote m’s partner to be p(m),

and w’s partner to be p(w)) such that

• m prefers w to p(m), w prefers m to p(w) or w is indifferent between m and p(w);

• w prefers m to p(w), m prefers w to p(m) or m is indifferent between w and p(m).

The “Men′′ set M in this problem instance is the set of all Access Arteries, while the “Woman′′

set W consists of all TPPSPs. The objective is to find a matching such that each Access

Artery is finally matched with some TPPSP. How do we construct preference lists for every

member participating in this matching scheme? First of all, we introduce a parameter “Ambiguity

Measure” AM such that each vertex, regardless of which set it is in, ranks each vertex in another

set by the order of distance with respect to AM , for example, for v ∈M

Rank(u1) > Rank(u2), if dis(v, u2) +AM < dis(u1, u2), (4.6)

u1 = u2, if |dis(v, u1)− dis(v, u2)| ≤ AM , (4.7)

Rank(u1) < Rank(u2), if dis(v, u2) +AM > dis(u1, u2). (4.8)

In this way, a preference list possibly containing indifference is created. Since |M | may not equal

|W |, considering if |M | > |W | there is no solution, if |M | < |W |, we simply add some dummy

“men” to M such that for each dummy Access Artery, it is indifferent among any TPPSP and

none of the TPPSPs prefers any dummy “man” to any normal “man”.

Next, we provide the revised algorithm.

Adapted version of stable marriage problem with indifference

assign each node to be free

repeat

PHASE 1: remove any pair causing instability from both sets

PHASE 2:

if the engagement graph does not contain a perfect matching then

find the critical set Z;

delete every pair at the tail of the preference list of nodes in the critical set

end if
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until (some Access Artery’s list is empty) or (every node is engaged)

if everyone is engaged then

any perfect matching in the engagement graph is a stable matching;

else

return any maximal matching

end if

Theoretically, this algorithm may not find a perfect matching at times since the constraint is

strong stability. We could always modify this constraint to be weak stability[5] to ensure there

always exists a result. Nonetheless, empirical studies show that this method is generally robust

since only 6.78% of our tests do not generate perfect matching.

4.4.3 Scheme 3: Hungarian Algorithm

This method was developed and published by Harold Kuhn in 1955 [3]. We formalize the problem

in our specific instance. Let indication variable

xij =

1, if ith node is assigned to jth node,

0, otherwise..
(4.9)

We adopt the same method of appending dummy nodes to the end of the set of Access Arteries

such that we could make both set equal in cardinality. It is assumed that every Ai is assigned

to only one Tj and vice versa, therefore,
∑

1≤j≤n xij = 1 for 1 ≤ i ≤ n∑
1≤i≤n xij = 1 for 1 ≤ j ≤ n.

(4.10)

At the same time we construct a matrix (aij) where any aij represents the distance from Ai to

Tj . Our objective is to choose xi,j such that it minimizes the total distance∑
1≤i≤n

∑
1≤j≤n

aijxij . (4.11)

Next we apply Hungarian’s algorithm then we will be able to find the solution that minimizes

the sum of distances from TPPSPs to Access Arteries.
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4.4.4 Comparison of three schemes after implementation

Here

is a table that compares the result using three different models. Success rate measures whether a

method could generate a perfect matching. Greedy method and Hungarian Algorithm ensure the

existence of perfect matching since there are no other forbidding constraints. Stable matching

may not be able to output a perfect matching as mentioned above. Since Hungarian Algorithm

aims at minimizing the total distance costs, therefore the no other method could produce a result

whose average distance is shorter than that produced by Hungarian Algorithm. Considering the

possible scenario that may happen in the previous section about the Greedy Method, it has a

large standard deviation, which reveals the instability of this method.

We provide the detail of the implementation of Hungarian Algorithm in the Appendix and

the following is the assigning scheme.

(12, 14, 16, 9, 11, 13, 10, 15, 8, 7, 2, 5, 4), (4.12)

where the sequence describes the sequence of TPPSP assigned to corresponding Access Artery, for

example, TPPSP number 12 is assigned to the first Access Artery under the natural numbering

system of the given information.

4.5 Marginal Network Circle Model with Inductive Rea-

soning

In this section, we address the problem of finding a containment strategy to catch a criminal

who committed a crime at some spot of the city. The virtual scenario we create to model the

reality is based on infinitesimal discrete time system, namely, ε is a time unit and any other

representation of time in the defined system is the multiple of ε [7]. We abbreviate aε as a in

the following paragraph. The following notions and assumptions are needed in the description

of the method.

Notations and Assumptions

• The criminal is caught if and only if given the current location of the criminal, there is no

way he could possibly go without bumping into any TPPSP;
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• Every TPPSP is only able to catch a criminal at some junction;

• The time for TPPSP in different part of the city to receive the report slightly differs due to

propagation effect. Define w(d) to be a delay coefficient which is a function with respect to

the distance from the location of the current TPPSP to the crime spot Oc, then the time

for Ti to receive report is 3 + w(d(Ti, Oc));

• β stands for the time span within which the criminal will remain inside the city;

• Let the initial time be tinit when TPPSPs receive the report (after around 3 minutes). In

the following paragraphs when we refer to time t, it means the relative time elapse with

respect to tinit;

• Let Ret be the set of junctions such that the criminal could reach at time t;

• The junctions in a city are uniquely numbered;

• Assume the speed of the criminal the same as the police.

4.5.1 Step 1: Emergency Block

Let the D(i, j) store the shortest path to move from junction i to junction j. It is easy to derive

D(i, j) using Dijkstra’s Algorithm given the network layout. Given a thresholding value dth, if

the distance d(C,CE) between a crime spot C and a city exit CE is greater or equal to dth,

then we immediately block those exits in the susceptible area. The rationale of this action is to

prevent the criminal from escaping the city, since if it happens it would not be possible for the

police in this city to catch the criminal anymore.

4.5.2 Step 2: Computation of the Marginal Network Circle

At every time step, we mark the junctions that have been reached before, and let AlreadyReached

be the collection set. Suppose at time tk, let Reachtk be the set of marginal junctions Rei’s that

the criminal is likely to reach in tk but not tk − 1, each of which is equipped with probability

pi. For each Rei ∈ Reachtk , we consider the set ConnectRei that contains all junctions Rel

that are directly connected with Rei. For each element Rej ∈ ConnectRei − AlreadyReached,

we compute the shortest distance PathRei,Rej between Rei and the nearest city exit CEREi,Rdj

through Rej . Then the probability of embarking on the road that leads to Rej given the criminal

is at Rei is

Pr(Rej , Rei|Rei) = 1−
PathRei,Rej∑

Rej∈ConnectRei
−AlreadyReached PathRei,Rej

(4.13)
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At time tk, for each Rel /∈ AlreadyReached and Rel ∈ ConnectRel ∩Reachtk , Rel ∈ Reachtk+1.

Therefore,

pl =
∑

Rei∈ConnectRel
∩Reachtk

Pr(Rel, Rei|Rei) · pi (4.14)

In this inductive manner, we could compute all Reacht from time tinit to β.Note that at tinit,

the criminal has been running for 3 minutes, therefore p0 does not equal 1. In fact, we could

extend the indexes of probability to negative numbers such that p−tinit = 1.

4.5.3 Step 3: Besiege the Criminal

The principle of besieging a criminal is to block the junctions where the criminal is likely to

appear at time t. By Step 2, we already know that we only need to ensure all the junctions in

Reacht are blocked by time t. Let us formulate a linear program to solve the problem.

Variables and Constraints:

• O: set of junctions in Reacht and are reachable by some TPPSP, while Oi is the subset of

O that contains the junctions reachable by Ti with elements Oij

• xij is defined if and only if Oij exists and is well defined

xij =

1, Ti is assigned to Oij

0, otherwise
(4.15)

•
∑

Ti∈T xi,j ≤ 1 for any Oij ∈ Oj , for any Oj ∈ O

•
∑

Oij∈Oj ,Oj∈O xi,j = 1 for any Ti ∈ T

The probability of successfully besieging the criminal at time t is

Pr(Besiege) =
∑

Ti∈T,Oj∈O
pj · xij (4.16)

The goal is to maximize Pr(Besiege). We use a linear programming (LP)-based branch-and-

bound algorithm [9].
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4.5.4 Implementation

Figure 3 is the resulting curve we obtain with x-axis representing time and y-axis representing

probability. We choose the integer points in the interval [5,25], which represents the multiples

of ε. The figure is the graph after cubic interpolation. To explain there are two sudden drops

in probability after around 8 minutes and 17 minutes, see Figure 1 that plots the density of the

junctions in the city and Figure 2 that plots the distribution of TPPSPs in district A. It can

be observed from the density plot of this city that the marginal network circle that the criminal

reaches after 8 minutes and 17 minutes covers the high density region in the city, where the ratio

of number of TPPSPs to number of junctions is about 1:10. Thus, TPPSPs are less likely to
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cover the possible junctions the criminal may reach at that time. Given the data we obtain in the

implementation, we give two suggestions. (The following graphs describe the junctions likely to

be reached by the criminal after 24 minutes and the original location of the corresponding TPP-

SPs that block those junctions.)

• Block the junctions within the marginal network circle as the criminal is predicted to reach

after 14 minutes. The probability of catching the criminal after 14 minutes is 73.68%, which

is the local maxima. The advantage of this strategy is that it aims to catch the criminal in

a short time while it makes sure the probability is high enough. The disadvantage of this

strategy is that there are still chances that the criminal will escape.

• Block the junctions within the marginal network circle as the criminal is predicted to reach

after 24 minutes. In this case, the success rate of catching a criminal is close to 1. However,

the disadvantage of this strategy is it takes a longer time to catch the criminal.
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In conclusion, we recommend the first strategy if the time factor for this anti-crime action is

weighted higher than accuracy. We recommend the second strategy in the other case.
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4.6 Sensitivity Analysis

Distribution Optimization Model involves some randomly chosen variables such as Police Force

zk and Penalty pk. In order to determine the effect the variation of those parameters have on

our models, we implement the Distribution Optimization Model with

zk ∼ N(2.3, 0.01), N(2.5, 0.02), N(3, 0.01), N(4, 0.05) (4.17)

Not surprisingly, if the zk is larger, the decrement of accident rates of junctions that it may cause

will be larger. However, although the absolute values alter, the relative relationship between

different sets of results with other variables unchanged remain the same. We go through the

same verification procedures for other models, those models generally show the robustness.

4.7 Strengths and Weaknesses

Strengths

• Compact formulation of the problem. Distribution Optimization Model makes

use of the variant of distribution problem which can be used to solved similar problems.

Three matching models have wide application in similar applications. Marginal Network

Circle Model with Inductive Reasoning mimics the process of human reasoning, which is

an essential principle for logical validation [?].

• Various alternatives. We use three methods to tackle the matching problem. It

is noteworthy that the application of stable marriage problem with indifference to this

problem is a novel approach. We compare and choose from the alternatives such that the

final method we decide to adopt will be optimal.

• Easily computable and applicable. Due to the use of Dijkstra’s Algorithm, the

final results of the above mentioned models can be computed with modest computational

resources.

• Consistent behavior with simple assumptions and criteria. In Distribution Op-

timization Model, we satisfy the criteria in the evaluation schema, such as there should be

more overlapping of TPPSP administrative region when a point resides at a high-density

area, without intensionally trying to do so.

Weaknesses

• Cunning criminal. The criteria of catching a criminal specified in Marginal Network

Circle Model with Inductive Reasoning is to besiege the criminal. However, besieging a

criminal does not equal catching a criminal.
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• Probability assignment. The probability weight for each direction in Marginal Network

Circle Model with Inductive Reasoning is solely based on the consideration of distance to

the nearest city. In real life, other factors like alliances may also be taken into consideration.

• Possible synergy. The greedy method we use to decide the layout of TPPSPs in a city

focuses on marginal effect a newly established TPPSP might bring. Synergy may arise in

terms of functionality improvement.

4.8 Conclusion

In this report, we propose, formalize and validate several models to tackle three major problems:

• Assignment of TPPSPs

• Matching TPPSPs to Access Arteries

• Criminal Chasing Strategy

Primarily tested on district A, Distribution Optimization Model gives a solution that every

junction will have an optimal share of police force. The greedy method ensures the optimality and

the results obtained are satisfactory. Comparing three matching schemes that match TPPSPs

to Access Arteries in case of emergency, we choose Hungarian Algorithm as the prime strategy

for its performance is the most accurate and compact. Marginal Network Circle Model with

Inductive Reasoning uses agent-based simulation which expects each individual to be rational and

independent in decision making. The result shows that there is a trade-off between probability

and time. We give two recommendations for those who have different perspectives in weighing

the two factors.
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Appendix A

Hungarian Algorithm

f unc t i on [ assignment , co s t ] = Hungarian ( costMat )

% Hungarian Algorithm f o r D i s t r i b u t i o n Problem .

%

% [ ASSIGN,COST] = Hungarian (COSTMAT) re tu rn s the optimal column i nd i c e s ,

% ASSIGN ass i gned to each row and the minimum COST based on the ass ignment

% problem repre s en ted by the COSTMAT, where the ( i , j ) th element r e p r e s e n t s the co s t to a s s i g n the j th

% job to the i t h worker .

ass ignment = ze ro s (1 , s i z e ( costMat , 1 ) ) ;

c o s t = 0 ;

costMat ( costMat˜=costMat)= I n f ;

validMat = costMat<I n f ;

va l idCo l = any ( validMat , 1 ) ;

validRow = any ( validMat , 2 ) ;

nRows = sum( validRow ) ;

nCols = sum( va l idCo l ) ;

n = max(nRows , nCols ) ;

i f ˜n

return

end

maxv=10∗max( costMat ( validMat ) ) ;
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dMat = ze ro s (n) + maxv ;

dMat ( 1 : nRows , 1 : nCols ) = costMat ( validRow , va l idCo l ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% STEP 1 : Subtract the row minimum from each row .

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

minR = min (dMat , [ ] , 2 ) ;

minC = min ( bsxfun (@minus , dMat , minR ) ) ;

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
% STEP 2 : Find a zero o f dMat . I f the re are no s t a r r e d z e ro s in i t s

% column or row s t a r t the zero . Repeat f o r each zero

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
zP = dMat == bsxfun ( @plus , minC , minR ) ;

s tarZ = ze ro s (n , 1 ) ;

whi l e any (zP ( : ) )

[ r , c ]= f i n d (zP , 1 ) ;

s tarZ ( r)=c ;

zP( r , : )= f a l s e ;

zP ( : , c)= f a l s e ;

end

whi l e 1

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
% STEP 3 : Cover each column with a s t a r r e d zero . I f a l l the columns are

% covered then the matching i s maximum

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
i f a l l ( starZ >0)

break

end

coverColumn = f a l s e (1 , n ) ;

coverColumn ( starZ ( starZ>0))= true ;

coverRow = f a l s e (n , 1 ) ;

primeZ = ze ro s (n , 1 ) ;

[ rIdx , cIdx ] = f i n d (dMat(˜ coverRow , ˜ coverColumn)==bsxfun ( @plus , minR(˜ coverRow ) ,minC(˜ coverColumn ) ) ) ;

whi l e 1

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
% STEP 4 : Find a noncovered zero and prime i t . I f the re i s no s t a r r e d
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% zero in the row conta in ing t h i s primed zero , Go to Step 5 .

% Otherwise , cover t h i s row and uncover the column conta in ing

% the s t a r r e d zero . Continue in t h i s manner u n t i l the re are no

% uncovered ze ro s l e f t . Save the s m a l l e s t uncovered value and

% Go to Step 6 .

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
cR = f i n d (˜ coverRow ) ;

cC = f i n d (˜ coverColumn ) ;

r Idx = cR( rIdx ) ;

cIdx = cC( cIdx ) ;

Step = 6 ;

whi l e ˜ isempty ( cIdx )

uZr = rIdx ( 1 ) ;

uZc = cIdx ( 1 ) ;

primeZ ( uZr ) = uZc ;

s t z = starZ ( uZr ) ;

i f ˜ s t z

Step = 5 ;

break ;

end

coverRow ( uZr ) = true ;

coverColumn ( s t z ) = f a l s e ;

z = rIdx==uZr ;

r Idx ( z ) = [ ] ;

cIdx ( z ) = [ ] ;

cR = f i n d (˜ coverRow ) ;

z = dMat(˜ coverRow , s t z ) == minR(˜ coverRow ) + minC( s t z ) ;

r Idx = [ rIdx ( : ) ; cR( z ) ] ;

cIdx = [ cIdx ( : ) ; s t z ( ones (sum( z ) , 1 ) ) ] ;

end

i f Step == 6

% ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
% STEP 6 : Add the minimum uncovered value to every element o f each covered

% row , and subt rac t i t from every element o f each uncovered column .

% Return to Step 4 without a l t e r i n g any s ta r s , primes , or covered l i n e s .

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
[ minval , rIdx , cIdx ]= oute rp lu s (dMat(˜ coverRow , ˜ coverColumn ) ,minR(˜ coverRow ) ,minC(˜ coverColumn ) ) ;

minC(˜ coverColumn ) = minC(˜ coverColumn ) + minval ;

minR( coverRow ) = minR( coverRow ) − minval ;

25



e l s e

break

end

end

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
% STEP 5 :

% Construct a s e r i e s o f a l t e r n a t i n g primed and s t a r r e d z e ro s as

% f o l l o w s :

% Let Z0 r e p r e s e n t the uncovered primed zero found in Step 4 .

% Let Z1 denote the s t a r r e d zero in the column o f Z0 ( i f any ) .

% Let Z2 denote the primed zero in the row o f Z1 ( the re w i l l always

% be one ) . Continue u n t i l the s e r i e s te rminates at a primed zero

% that has no s t a r r e d zero in i t s column . Unstar each s t a r r e d

% zero o f the s e r i e s , s t a r each primed zero o f the s e r i e s , e r a s e

% a l l primes and uncover every l i n e in the matrix . Return to Step 3 .

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
rowZ1 = f i n d ( starZ==uZc ) ;

s tarZ ( uZr)=uZc ;

whi l e rowZ1>0

starZ ( rowZ1)=0;

uZc = primeZ ( rowZ1 ) ;

uZr = rowZ1 ;

rowZ1 = f i n d ( starZ==uZc ) ;

s tarZ ( uZr)=uZc ;

end

end

% Cost o f ass ignment

rowIdx = f i n d ( validRow ) ;

co l Idx = f i n d ( va l idCo l ) ;

s tarZ = starZ ( 1 : nRows ) ;

vIdx = starZ <= nCols ;

ass ignment ( rowIdx ( vIdx ) ) = co l Idx ( starZ ( vIdx ) ) ;

co s t = t ra c e ( costMat ( assignment >0, ass ignment ( assignment >0) ) ) ;

f unc t i on [ minval , rIdx , cIdx ]= oute rp lu s (M, x , y )

ny=s i z e (M, 2 ) ;

minval=i n f ;

f o r c =1:ny
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M( : , c)=M( : , c )−(x+y ( c ) ) ;

minval = min ( minval , min (M( : , c ) ) ) ;

end

[ rIdx , cIdx ]= f i n d (M==minval ) ;
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Appendix B

Distribution Model Evaluation

Scheme

% Function Di s t r i bu t i onEva lua t i on eva luate the bes t junc t i on to add

% a new TPPSP

func t i on [ r e s u l t s co r e ] = Di s t r i bu t i onEva lua t i on (TPPSP, a c c i d e n t r a t e )

% Res ize the o r i g i n a l matrix and a l i g n the c o e f f i c i e n t s f o r

% the unknowns . The pena l ty i s s e t to be 0 . 4 .

[ p o l i c e ord inary ]= s i z e (TPPSP) ;

TPPSP=t o c o l (TPPSP) ;

pena l ty =(−0.4)∗ ones ( ordinary , 1 ) ;

TPPSP=[TPPSP’ penalty ’ ] ’ ;

% Set the e q u a l i t y cons t ra in t , where Aeq(X)=beq

% X stands f o r the unknowns . Here we s e t

% the p o l i c e f o r c e to be a random v a r i a b l e with

% mean 3 .0 and standard dev i a t i on 0 .01

Aeq=generato r ( po l i c e , ord inary ) ;

beq=normrnd ( 3 , 0 . 0 1 , p o l i c e+ordinary , 1 ) ;

beq ( p o l i c e +1: p o l i c e+ord inary )= ze ro s ( ordinary , 1 ) ;

% Set the i n e q u a l i t y cons t ra in t , where A(X) <= b

% For the d e t a i l e d c o n s t r a i n t s p l e a s e r e f e r to the

% d i s t r i b u t i o n Model
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A=eye ( p o l i c e ∗ ord inary+ord inary ) ;

b=ze ro s ( p o l i c e ∗ ord inary+ordinary , 1 ) ;

b ( p o l i c e ∗ ord inary +1: p o l i c e ∗ ord inary+ord inary )= a c c i d e n t r a t e ;

b ( 1 : p o l i c e ∗ ord inary )=(3+3∗0.01) .∗ ones (1 , p o l i c e ∗ ord inary ) ;

lb=ze ro s ( p o l i c e ∗ ord inary+ordinary , 1 ) ;

% Make use o f Matlab API to compute the minimum value

% of our o b j e c t i v e func t i on

r e s u l t=l i n p r o g (TPPSP,A, b , Aeq , beq , lb ) ;

s c o r e=mean(TPPSP.∗ r e s u l t ) ;

end

func t i on X = t o c o l ( X )

%

% TOCOL Converts a vec to r or a matrix in to a column vecto r .

% I f input i s a l r eady a column vector , i t i s returned with no change .

% I f input i s a row vector , i t i s converted in to a column vecto r and

% returned .

% I f input i s a matrix , each row i s converted in to a column , and a l l

% r e s u l t i n g columns are p laced in s e r i e s i n to a s i n g l e column which i s

% returned .

% check i f input i s a vec to r

[ m, n ] = s i z e (X) ;

i f m∗n==m

return % input i s a l r eady a column vecto r with n rows

e l s e i f m∗n==n

X = X’ ; % input i s converted from row vecto r to column vecto r

e l s e i f (m∗n>n) | | (m∗n>m)

X = X’ ;

X = X ( : ) ; % input i s converted from matrix to column vecto r by row

e l s e

X = [ ] ; % input i s unknown and an empty output i s returned

end

end
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f unc t i on y = generator ( row , c o l )

% Function generato r gene ra t e s Aeq which i s t a i l o r e d to the v a r i a b l e s

% format r equ i r ed f o r t h i s l i n e a r program .

A=ze ro s ( row+col , row∗ c o l+c o l ) ;

r ecord =1;

f o r i =1:row

f o r k=1: c o l

A( i , r ecord+k−1)=1;

end

record=record+c o l ;

end

record =1;

minus=row∗ c o l +1;

f o r j=row+1:( row+c o l )

f o r t =1: c o l : ( row∗ c o l )

A( j , r ecord+t−1)=1;

end

A( j , minus)=−1;

minus=minus+1;

record=record +1;

end

y=A;

end
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