Asian Information—Science—Life ISSN 1541-8219
Volume 1, Number 3, pp. 241-248 © 2003 Nova Science Publishers, Inc.

BRANCH AND BOUND ALGORITHM FOR FLEXIBLE FLOWSHOP
WITH LIMITED MACHINE AVAILABILITY*

XLIUN WANG anND JINXING XIET

matntenance activities. In this paper we develop a branch and bound algorithm to solve the flexible flowshop
scheduling problems with non-resumable availability constraint. Both the machine-based and Job-based
lower bounds are devefoped by making use of the lower bounds of the ciassical flexible fowshop problems.
Numerical experiments are conducted and the results show that the branch and bound algorithm is effective

Key words. flexible flowshop, scheduling, limited availability, branch and bound

parallel machines. Since the classical flowshop scheduling problem F, { | Crngs is known to
be solvable in polynomial time [9], but the problem Fy |- | Cruag is proved to be strongly A"P-
hard [5], the flexible flowshop scheduling problems with makespan objective have attracted
a great deal of attention in the last decades. The problem Fo(P) | - | Crae is N'P-hard in
the strong sense, even in the case where there are only two machines in one stage and only
a single machine in the other stage [7). Various approximation algorithms for the flexible
flowshop problems were designed [15], (3], for some of which the corresponding worst case
performance analysis was provided and the average case performance was showed. Brah and
Hunsucker [2] presented a branch and bound algorithm to solve flexible flowshop scheduling
problems. Hall 6], Schuurman and Woeginger [14] discussed the existence of polynomial
time approximation schemes for flexible flowshop scheduling problems.

unavailable time intervals, are known in advance,

Scheduling problems with limited machine availability have been studied to a less extent,.
Adiriet al. [1] showed that a single machine problem with machine breakdowns is A’P-hard
if the breakdowns are known in advance. Schmidt [13] discussed scheduling problems with
unavailable intervals for g parallel machine problem. Hwang and Chang (8] proved that the
makespan of the LPT (Longest Processing Time) schedule is bounded by twice the optimal
makespan if no more than half of the machines are allowed to be shutdown simultaneously.
Lee [11] proved that the two-machine flowshop problem with makespan objective and one un-
available interval is A"P-hard in the ordinary sense, and presented a dynamic programming
approach and several heuristics with worst case performance analysis. Kubiak et al. (10}
extended the complexity results and proved that the two-machine flowshop problem with
arbitrary number of unavailable intervals on one machine is A'P-hard in the strong sense,

*This work was supported by the National Natural Science Foundation of China {NSFC Project No.
69904007). :

j'Depza.rt,nrlem of Mathematical Sciences, Tsinghua University, Beijing 100084, China
(jxie@math.ts inghua.edu.cn).

241

242 Xijun Wang and Jinxing Xie

They also proposed a branch and bound algorithm for the problem with arbitrary number
of unavailable intervals on both machines. Lee {12] gave the first discussion about the semi-
resumable two-machine flow shop model and provided worst case performance analysis for
some algorithms. Espinouse, Formanowicz and Penz [4] studied both the resumable and
the non-resumable two-machine flow shop models under the no-wait environment. Wang
and Xie [16] gave the first study for the two-stage flexible flowshop with limited machine
availability. They proved the AP X-hardness of the problems with unavailable interval(s)
on the whole second stage, or on the whole first stage with more than one machine. They
also analyzed the worst case performance of two heuristics for the case where there is only
one machine at the first stage and only one unavailable interval on that machine.

In this paper we develop a branch and bound algorithm to solve the flexible flowshop
scheduling problems with non-resumable availability constraint. In the next section, we

2. Problem characteristics. In the flexible flowshop scheduling problem, all ma-
chines at the same machine center are assumed to be identical, i.e. they have the same
capability and speed. Thus any two tasks assigned to two machines at the same machine
center can be interchanged while keeping the makespan (the maximum completion time)
unchanged. However, generally, this property does not hold when the constraint of limited
machine availability exists, since the unavailable intervals differ from machine to machine.
This property implies that the assumption of identical machines is greatly weaken when the
constraint of limited machine availability applies.

According to the theoretical analysis of the complexity and approximability for the
fexible flowshop with limited machine availability [16], the most tractable algorithms solving
these problems in practice might be heuristics. However, to our surprise, this kind of
polynomial-time heuristics will not have any guarantee of finjte worst case bounds [16]. In
such cases, it’s important to provide some benchmarks to the design of heuristics, by making
use of optimal algorithms such as branch and bound algorithms.

The flexible flowshop consists of a set of m > 2 machine centers (21, Za,. .., Zm] with
center Z; having m; > 1 identical paralle] machines { M}y, Mjs, . .. M, }. Machine centers
are also called stages. There are 7 jobs {; |1 <i< n} to be processed in the flowshop.
Function p(J;) = [pi1, Pio, -+, Pim] denotes the Processing times required by J; in centers
(21, Zs, ..., D] respectively. We assume that unavailable intervals do not overlap on each
machine. Denote by §5x,0 and Ay, the starting time and length, respectively, of unavailable
interval [on machine My, numbered according to the starting times of the unawvailable
intervals. Each machine can process at most one job at a time and each job can be processed
by at most one machine at a time. The objective considered is to minimize the makespan

notation for scheduling problems, the problem considered in this paper can be written as
F(P) | 5454, hikt | Craz, where F(P) means the flowshop with parallel machines.

Denote by N the set of all jobs, e, N = {hil1<ic< n}. When all the Jjobs have
been assigned to machines in all stages, it’s easy to see that only the schedules where all
the jobs are processed as early as possible need to be considered. Thus the total amount of

Branch and Bound Algorithm for Flexible Flowshop with Limited Machine Availability 243

all feasible schedules will be H?:l(n‘m?)

Supposing that the partial schedule involving all jobs on all machines from stage 1
through stage 7 — 1 has been determined, we continue to make the scheduling decision on
stage 7 for all the jobs. Given a ordered subset 4 of N, let S;{A) be the partial schedule
through stage j — 1, along with the sequence of the Jjobs in subset A which have been
assigned to machines for processing at stage j. Denote by Cx(5;(A)) the completion time

of the partial schedule S5;(A) on machine My, and let Ci(S3{A)) = 0 if no job has been -

assigned to machine M; in the partial schedule S3{A). Denote by JC;(J,) the completion
time of job J, at stage 7, and let JCo(Jy} = 0 for each job Join N,

Forajob J, & A, let A’ = AU{J,} and S;(A’) represent the augmented partial schedule
formed by appending job Jy to S5(A) at stage 7. It is obviously that the earliest possible
time for job J, to start to process on machine M, is

(2.1) ET(55(A), Jo) = max{Cy(S;(A)), JC;_1(J,)}.

However, due to that there are unavailable intervals on the machine, the job may be
delayed to be processed. Following these understandings, we have

ET(5;(A), Jy) + B9;(S55(A)) + pgs,
(2.2) Ci(S;(A")) = if J; is assigned to My
Cr(S5(A)), otherwise,

where Ay;(5;(A)) means the delay time for job Jg on machine Ay, due to the unavailability
constraint which results in that the job Jq can not be completed between ET(8;(A), J,)
and the unavailable intervals following ET(S;(A), Jq) on machine M.

If no unavailable interval exists from ET(S;(A), J,) to ET(5;5(A4), Jg) + pyj on machine
Mjy, then job J, need not to be delayed and A;(S;(4)) = 0. Otherwise, J, will be delayed
for processing. Under this situation, the first unavailable interval following ET(S;(A), J,)
is

(23) l; = mm{! 0 < Skl — ET(SJ(A), Jq) < qu}.

However, .J, may be further delayed due to the unavailable intervals following the un-
available intervals {; on machine M ik- Let I3 be the first unavailable interval after which Jq
can start to process on the machine immediately. Specifically, it can be calculated as

(2.4) 12 = min{[o 2 ll, 3jk,!+1 - (Sjk,,f -+ hjk,;) 2 qu}.
Therefore, the delayed time for ..]q is -
(2.5) Rgi (S5 (A)) = (Siks + hyr,) — ET(S;(A), J,).

Following these notations, the makespan (the maximum completion time for all the jobs
on all machine centers) is minimized if and only if max {Cy(S,(N))} is minimized. That
Is to say, the objective function of the problem is

(2.6} Cmaz = mfx{Ck (Sm (N))}

3. Lower bounds. Tn the following subsections, we propose lower bounds for the
completion time of all jobs at all stages.

244 Xijun Wang and Jinxing Xie

3.1. Machine-based bound. Given g partial schedule 5;(A), the unprocessed work-
load of the unprocessed Jjobs (the jobs in set &V — A) at stage j can be utilized to get a
lower bound of the completion time of all Jobs at stage j, and therefore a lower bound of
the completion time of all Jobs at all stages.

Denote K1 the set of machines at machine center Z; to which some tasks has been
assigned in partial schedule Si(A), and K, the set of other machines at machine center Z;.
For a machine k ¢ K 1, the earliest possible time for this machine to process the jobs in set
N-Ais

(31) T]k = max{,]qlénj\iiIlA JCJ_I(JQ),C[C(SJ(A)}
For a machine ¢ K, the earliest possible time for this machine to process the jobs in
set N - Ais

(32) TQ = J lén]%fn—A JCJ'_1 (Jq)

It is easy to see that the completion time for all the jobs through stage 7 is at least

(3.3) Ty={> Ty +|KyTy + > pot/m,.

ke, J,EN-A

augmented from S;(A), which just completes the sche'duling for all the jobs through stage
J, can be expressed as

ACT(Sj(A))
= T3+ A0;(S;(A))/m,
={ 3 T+ |Ko|To} fmy + 2> Peit/my+ A8;(S55(A4))/my
keK,y JoEN—A
(3.4) = {kg;ﬁ max{Cx (5, (A))’qugnjéiri)q JC51{J,)}

+H] min JC;1(J)}/m;

+H quj}/mj +AG(S5;5(A))/m;.

of that A;(S;(A)) consists of only the following two components: a) The sum of the time
lengths of the unavailable intervals for machines in K between the time Ty, and the time

Branch and Bound Algorithm for Flexible Flowshop with Limited Machine Availability 245

T3; b) The sum of the time lengths of the unavailable intervals for machines in K2 between
the time 75 and the time point T, Therefore, we estimate Aj{S;(A)) as

(3.5) A AN ={3_ 1 Y s+ 200 s

ke K, E:leSsij(T(; keK, l:TzSSﬂ,-]t{Ta

From these observations, we know that ACT(S;(A))} is a lower bound of the completion
time of any partial schedule 55{N) augmented from S;{4), ie

(3.6) ACT(8;(4)) < max Cr{S;{N)).

Finally, the machine-based lower bound of complete schedules for all jobs on all stages,
augmented from a partial schedule S;(A), can be calculated as '

(3.7) LBM(S;(A)) = ACT(S;(A4)) + min 21 Pagr-
J'=i

3.2. Job-based bound. Given a partial schedule §;(A}, the information of jobs in
job set A can be utilized to get the earliest starting time of the rest unassigned jobs, and
therefore a lower bound of the completion time of all jobs at all stages. For example, Brah
and Hunsucker [2] presented a Jjob-based bound

(3.8) EBJS;(A)) = min C(S5(4) + max " g

J'=j

Using this approach, if some machines have not been assigned any task, the estimate
of the earliest possible starting time of the rest unassigned jobs will be zero, and thus
the estimate of the completion time of all jobs at all stages will be small. By considering
the completion time of the rest unassigned jobs at the remaining stages, the lower-bound
estimate of the completion time of the complete schedule augmented by S;(4) will become
larger. Therefore, the job-based bound can be modified to

(min{, min 052 (J,), max Cu(S, (4)))

m

y if K .
(3.9) LBJ(S,(A)) — +Jqlé1]%)ifij§qug » i Ky # oy

m
min Ci(55{4)) + qulﬁ’j,ljgj Poj, Ky =g

3.3. Integrated bound. In any machine center, if the number of Jjobs to be processed
is much larger than that of all the machines, the average completion time of that machine
center will generally be easily reached by a schedule, and so the machine-based lower bound
will be closer to the optimal completion time of complete schedules augmented from the
partial schedule. On the other hand, if the number of Jjobs to be processed is much smaller
than that of all the machines at some machine centers, the estimate of the earliest possible

schedules augmented from the partial schedule.

246 Xijun Wang and Jinxing Xie

Combining the machine-based bound and the job-based bound, we get a integrated
lower bound '

(3.10) LBC(S;(A)) = max{LBM(S,(A)), LBJ(S;(A))}.

4. Branch and bound algorithm. In the previous section, we introduced the lower
bound of the broblem. In this section, we give the detailed procedures of the branch and
bound algorithm for the problem.

4.1. Branching scheme. Any partial schedule will be considered to be a sub-branch in
our algorithm. According to the analysis in Section 2, the tasks assigned to two machines at
the same machine center cannot be interchanged. Otherwise, the makespan of the scheduyle
will be changed. Therefore, each schedule augmented from a S;(A) will be 2 possible sub-
branches of it. As we know, the effectiveness of the branch and bound algorithm is sensitive

in advance that there is no unavailability constraint on tha machine center. Whenever this
is the case, this branching scheme is accepted.

4.2. Procedures of the algorithm. The branch and bound algorithm for solving the
flexible flowshop with limited machine availability can be described as follows in detail:
Step 0: Initialize the best current solution,

are stored.
Step 2: If the stopping criteria is satisfied, then go to Step 6.

Step 3: Pop the branch out of the top of the stack. Generate all the sub-branches of this
branch. If these branches are leaf branches, then go to Step 5.

Step 4: Cut off those branches whose lower bounds are no less than the current best
makespan. Push the loft branches into the stack in the lower-bound~decreasing order.
Go to Step 2.

current solution, and go to Step 2.

Step 6: Qutput the best current solution and stop.

We can limit the amount of memory needed to O(n*m) by keeping track of the path
from the top level to the current level of the branches, and recording the level numbers of
all the branches before they are pushed into the stack.

In practical implementation, we can firstly use other heuristics to get the initial solution
in Step 1, because a, good initial solution may reduce the possibility for the algorithm visiting
to deep-level branches and thus improve the performance of the algorithm. Secondly, the
stoping criteria in Step 2 and the cut-off condition in Step 4 could be changed to fit different
situations according to the requirements of the practical problems. If the computational time
is not critical, the stoping criteria can simply be 'stop when the stack is empty’

Branch and Bound Algorithm for Flexible Flowshop with Limited Machine Availability 247

TABLE 5.1
Computing results of the branch and bound algorithm for the flexible flowshop with limited machine
availability. The performance ratio is defined as the ratio between the makespans of the first and the last
feasible solutions searched by the algorithm.

of Average Average # Average
my, Instances feasibl ti f soluti :
T m . easible run time ol solutions periormance
J=1--m tested solutions Hr:Min:See searched ratio
41 2 2,2 10 1.475 x 108 00:00:01 12 1.174
4| 4 2,2,2,2 10 2.174 x 1010 00:00:01 666 1.500
6| 2 2,2 10 2.123 x 10% 00:00:01 3.117 x 103 2.286
613 23,2 10 1.115 x 10!3 00:04:02 2.612 x 10° 1.623
6| 4 2,2,3,2 10 5.136 x 1019 08:30:02 3.540 x 108 1.627
8| 2 3,2 10 2.731 x 1018 02:43:13 1.279 x 10° 1.383

solution with a guarantee of the given precision. Finally, if the algorithm stops once a leaf
branch is encountered at the first time, it becomes a kind of heuristic algorithm finding a
feasible solution.

5. Numerical experiments. As we have pointed out in the previous sections, the
performance of the branch and bound algorithm for flexible flowshop scheduling problems
with limited machine availability depends on the exactness of the lower bound. In order
to investigate the effectiveness of the algorithm, we have conducted a set of numerical
experinents. In these numerical experiments, only the branches with lower bound smaller
than 99% of the best current makespan are kept. All of the other branches are cut off. We
also make the following reasonable assumptions when generating the testing instances of the
problem:

1. The processing times are generated from a normal distribution with a constant mean
value.

2. The starting time of the unavailable interval on each machine is generated from a
normal distribution. The mean value of the starting times of the unavailable intervals on the
first machine center are generated from a uniform distribution between 0 and the average
workload of this machine center. The difference of the mean value of any two adjacent
machine centers is equal to the mean value of the average workload of the latter machine
center.

3. The length of any unavailable interval is generated from a normal distribution.

4. The mean value of the length of any unavailable interval for each machine center is
positively proportional to the average work load of that machine center.

5. There is only one unavailable interval on each machine in the planning horizon.

Assumption 1 corresponds to the similarity of jobs to be processed. By modifying the
standard deviation of the normal distribution, the difference of processing times can also
be implemented. If the unavailable intervals are regarded as machine maintenance times,
assumption 2 can be explained by the rationality of the maintenance plan. Assumption 3,
similar to the assumption 1, can be explained by the similarity of the maintenance times of
those machines at the same machine center. Assumptions 4 and § can be explained by the
periodicity and volatility of the planning horizon. '

The computing results are sumnyarized in Table 5.1. The computation is carried out on
an IBM PC of 400MHz. Comparing the average number of end nodes {completed schedules
for all the jobs on all the machine centers as feasible solutions) searched with the number of
all possible end nodes, we can see that the lower bound developed here significantly reduces
the visit to the end nodes. The average ratio of the makespan of the first end node to

248 Xijun Wang and Jinxing Xie

the final makespan obtained by the algorithm, with relative error bound of 1%, is about
1.6 according to the last column of Table 5.1. Such an average performance is relatively
satisfying for such an AP X-hard problem. Thus the branch and bound algorithm proposed
here might be useful for the flexible flowshop scheduling problem with limited machine
availability when the problem size is not very large. It provides a benchmark for other
heuristics solving the problem. '

REFERENCES

[1] 1. Apmri. J. Bruvo. E. FrosTiG AND A. H. . Rmnooy Kan, Single machine flow-time scheduling
with a single breakdoun, Acta, Informatica, 26 {1989), pp. 679-698.

[2] 8. A. Bran anp J. 1. HunsuckeRr, Branch and bound algorithm Jor the flow shop with mulliple
processors, European Journal of Operational'R%em‘ch, 51 (1991), pp. 88-99.

i3] B. CHEN, Analisis of classes of heuristics for scheduling a tow-stage flow shop with parallel machines
at one stage, Journal of the Operational Research Society, 46 (1995), pp. 234-244.

4] M. L. ESPINOUSE, P. FORMANOWICZ AND B. PENZ, Complerity results and approcimation algorithms
for the two machine no-wait flow-shop with limited machine availability, Journal of the Opera-
tional Research Society, 52 (2001), pp. 116-121.

(5] M. R. GaRrey, D. S, JOHNSON aND R. SETHI, The complexity of flow shop and Job shop scheduling,

Mathematics of Operations Research, 1 (1976), pp. 117-129.
8] L. A. Havy, Approzimability of flow shop scheduling, Mathematical Programming, 82 (1998), pp. 175~
190. .
7] HooGEVEEN, J. A.. LENsTRA. J. K. AND B. VELTMAN, Preemptive scheduling in o two-stage mulfi-
processor flow shop is NP-hard, European Journal of Operational Research, 89 (1998), pp. 172-175.
[8] H.-C. Hwang, anD S. V. CHANG, Parallel machines scheduling with machine shutdowns, Computers
and Mathematics with Applications, 36 (1998), pp. 21-31.
[9] 5. M. Jomwson, Optimal two- and three-siage production schedules with setup times included, Naval
Research Logistics Quarterly, 1 (1954), pp. 61-68.
(10] W. Kusiak, J. BiazEwicz. P. FORMANOWICZ AND G. SCEMIDT, A branch and bound algorithm for the
two machine flow shops with limited machine availability, Research Report RA-001/97, Institute
of Computing Science, Poznan University of Technology, 1997.
[11] C.-y. LEE, Minimizing the makespan in the two-machine flowshop scheduling problem with an avail-
ability constraint, Operations Research Letters, 20 (1997}, pp. 129-130.
, Two-machine Sowshop scheduling with availability constraints, European Journal of Opera-
tional Research, 114 {1997), pp. 420-429.
[13] G. Scumipr, Scheduling on semi-identical processors, Zeitschrift, fiir Operations Research, 28 (1984),
pp. 153-162.

(12]

multiprocessor flow shop problem, Theoretical Computer Science, 237 (2000), pp. 105-122.

[15] C. SRISKANDARAIAH AND S. P. SETHI, Scheduling algorithms for flexible flowshops: Worst and average
case perfermance, European Journal of Operational Research, 43 (1989), pp. 143-1860.

[16] X. Wang anp J. XIE, Two-stage flexible flowshop scheduling with limited machine avoilability, Work-
ing paper, Department of Mathematical Sciences, Tsinghua University, Beijing, China, 2001.

