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Abstract. Recently, the theoretical understanding of search algorithms, especially the so-called “No Free
Lunch” Theorem, shows certain fundamental limitations on universal search algorithms. One of the
practical implications of these understandings is exploiting domain-specific knowledge and
incorporating them into search algorithms. This paper emphasises the fundamental importance of the
ways in which such knowledge may be systematically exploited and incorporated into evolutionary
algorithms, and suggests that domain-specific representation scheme and domain-specific local search be
two basic starting points to combine problem-related knowledge and the general structure of
evolutionary algorithms. A heuristic genetic algorithm for multilevel capacitated lot-sizing problem is
used as an example to demonstrate these principles.
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1 Introduction

Stochastic search algorithms borrowing ideas from physical and biological metaphors grow
rapidly during last two decades. The methods of simulated annealing (Kirkpatrick et al., 1983) and tabu
search (Glover, 1986) are mainly stimulated by physical analogues. Other randomised methods, now
generally entitled as evolutionary algorithms, from the seminal work on genetic algorithms and classifier
systems (Holland, 1975), evolution strategies (Rechenberg, 1973, 1984; Bk & Schwefel, 1993) and the
evolutionary programming (Fogel et al., 1966), to more recent developments of the genetic programming
(Koza, 1991), memetic algorithm (Pablo & Norman, 1992; Radcliffe & Surry, 1994), etc., are stimulated
by natural selection and evolutionary theory. Evolutionary algorithms simply simulate the biological
evolution on computer and operate on a population of individuals (candidate solutions) which
manipulated by genetic operators. The linkages of the simulation to optimisation objective are built via a
biased sampling methods, i.e. a fitness-based selection process, where the fitness value of an individual
depends on its quality with respect to the optimisation objective. One of the advantages of evolutionary
algorithms over classical optimisation or search algorithms is their global optimisation ability for
multi-modal problems regardless of the properties of the objective function, such as convexity and
differentiability. Other advantages include intrinsic parallelism, convergence with probability one,
simplicity in implementation on computer and so on (Goldberg, 1989).

Due to their theoretically powerful ability to find global optimisation solutions for most of the
optimisation problems in a variety of fields, and their simplicity to be understood by everyone and
implemented on computers, evolutionary algorithms are regarded as most preferable and universal
optimisation methods by many practitioners. The philosophy “trying an evolutionary algorithm if you
cannot find other methods™ is a bit popular in current research and practice. Even more, some
practitioners accept such philosophy as “using an evolutionary algorithm even if you can find an efficient
classical algorithm™ or “it is unnecessary to consider domain-specific knowledge of interest when using
evolutionary algorithms”. These popular trends lead to some misuse of evolutionary algorithms and
make some practitioners confused with how to choose a correct search algorithm for their specific
problem. Despite occasional warnings from various researchers a great deal of research seems oblivious
to the fact that in certain situation there is no scope for distinguishing any of these biased sampling
methods from enumeration according to soFialled “No Free Lunch” Theorem(NFLT) (Wolpert &
Macready, 1995; Radcliffe & Surry, 1995). NFLT broadly shows that all search algorithms perform
equally well if a sufficiently inclusive class of problems is considered, explicitly reveals fundamental
limitations on search algorithms, and particularly highlights the necessity of theory exploiting and
incorporating domain-specific knowledge (Radcliffe & Surry, 1995).

This paper emphasises the fundamental importance of the ways in which domain-specific
knowledge may be systematically exploited and incorporated into evolutionary algorithms, and suggests
that the domain-specific representation scheme and the domain-specific local search be two basic starting
points to combine problem-related knowledge and the general structure of evolutionary algorithms. A
heuristic genetic algorithm for capacitated lot-sizing problem is used as an example to demonstrate these
principles.

2 No Free Lunch Theorem and Its Implications
2.1 Search Problem and Search Algorithm



NFLT is of the performance of a search algorithm for a search problem. A search problem (or
called optimisation problem) D is consisted of descriptions of a solution space S (the set of candidate
objects over which the search is to be conducted), an objective function f (which is a mapping from S to
the space of real objective function values, R) and the goal of maximisation (or minimisation) of f. It is
such description that includes all the domain-specific knowledge and an instance of D can be denoted by
(S, /). A search algorithm (either deterministic or stochastic) for the problem domain D is an iterative
strategy to produce a final solution from S given any instance (S, f) in D. As the key component of a
search algorithm, the iterative strategy will be defined by a function which, given a sequence of points
from S, and the corresponding sequence of objective function values for these points, (either
deterministically or stochastically) generates a new point from S.

As population-based stochastic search algorithms, evolutionary algorithms distinguish from
other search algorithms by operating on chromosome space / (or representation space of S) instead of S
itself. The representation space / of S will be taken to be a set of size at least equal to S, together with a
surjective function g (the growth function) that maps / onto S. Objective function values will also be
associated with points in the representation space / through composition of f with g.

2.2 No Free Lunch Theorems

NFLT was firstly presented by Wolpert and Macready (1995), and Radcliffe and Surry (1995)
generalised it to a more accessible and general form. Strictly, this theorem shows that over the ensemble
of all representations of one space with another, all search algorithms (in a rather broad class) perform
identically on any reasonable measure of performance. One corollary of the theorem is that no nonf#
epeating search algorithm (algorithm does not revisit points) can outperform enumeration over the
ensemble of all problems.

A first glance of this theorem will be not optimism for the fundamental limitation addressed by
the theorem. All of the previous continuous endeavour aiming to find an outperforming algorithm for all
the optimisation problems is questionable and should be carefully reassessed. But there are many
possible improvements that are not strongly limited by the theorem, for example, revisiting points
previously visited is popular in practical search algorithms. More important, the theorem states overall
performance of an algorithm for all problems and assumes the algorithm make no use of domain-specific
knowledge. Relaxing these restrictions may dramatically improve the performance of a search algorithm.
So it is not a really bad news.

2.3 Implications of No Free Lunch Theorem

Many useful implications can be drawn from NFLT. For example, more attention should be
paid on the scope and reasonability of the algorithm evaluation. The evaluation of an algorithm and the
comparison of some related algorithms, either analytically or numerically, are daily work for algorithmic
researchers. According to NFLT, more reasonable comparisons could be conducted between different
search algorithms when the problem domain is clearly specified. For a specified search algorithm,
distinguishing two problem domains with one performs well and the other performs badly is also
reasonable and valuable. These observations also provide a motivation for considering ways in which
both good representations and good algorithms can be designed and recognised for particular problem
classes (Radcliffe and Surry, 1995).

One of the most significant implications of NFLT is that algorithms should be matched to the
search problem at hand. Although a formal representation and many formal genetic algorithms can be
defined independent of problem-domain (Radcliffe and Surry, 1994), this formal evolutionary algorithm
without any domain-knowledge can not hope to perform well. For a formal evolutionary algorithm, “if no
domain¥ipecific knowledge is used in selecting an appropriate representation, the algorithm will have no
opportunity to exceed the performance of an enumerative search” (Radcliffe and Surry, 1995).

Generally speaking, a more satisfied solution can be gained with more deep domain-knowledge
incorporated. But the domain-knowledge of a specific optimisation problem is usually too vast to be
considered completely with a single algorithm. Even worse, there may be some domain-knowledge
which is difficult to be considered explicitly when design an evolutionary algorithm. These difficulties
reveal that, when designing a specific evolutionary algorithm for a specific problem domain, the critical
problem remaining is how to exploit the domain-specific knowledge and how to incorporate them into
the general logic and structure of evolutionary algorithms. Next section will discuss in more details about
the possible starting points.

3 Incorporation of Domain-Specific Knowledge
3.1 General Evolutionary Algorithm
The general logic and structure of evolutionary algorithms can be expressed mathematically as

follows (Bfik, 1996, pp.63-64):



“An evolutionary algorithm is defined as an 8-tuple EA = (7, ®, Q, y, s, 1, L, A) where [ =
A, x A is the space of individuals, and A, , A, denotes arbitrary sets. ®: / — R denotes a fitness

function assigning real values to individuals. Q = {0)9l RN | @, I —)]}"}U{a)@O e —)]i} isa
set of probabilistic genetic operators @g , each of which is controlled by specific parameters
summarised in the sets ® eR. sy :(/*UI*")—> I* denotes the selection operator, which may

change the number of individuals from A or A+ £ to &, where A, zt€ N and A= 4 is permitted.
An additional set @ of parameters may be used by the selection operator. £ is the number of parent

individuals, while A denotes the number of offspring individuals. Finally, 1: {true, false} is a

termination criterion for the EA, and the generation transition function W:7* — [* describes the
complete process of transforming a population P into a subsequent one by applying genetic operators and

selection: W =so0 Wg © 00 °WBg , W(P)=s4(QU we, (- (0g, (0g (P)))--)). Here
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Furthermore, it is possible to assume the genetic operators  and selection operator s be
representation-independent in evolutionary algorithms (Surry & Radcliffe, 1996). As just mentioned in
above section, a problem domain D consists of a set of problem instances and each instance defines a
search space S of candidate solutions and an objective function f© S — R. The comparison of these
ingredients of the problem domain with the general structure of EA makes clear that EA operates on
representation space / instead of original domain solution space S and EA processes individuals based on
fitness function @ instead of original domain objective function f. This observation leads to some
principal understandings on how to incorporate domain knowledge into evolutionary algorithms.
Probably the most directly method is to carefully design the representation space / and the associated
growth (or decoding) function g: 7 — S (fitness function ® = f o g: I — R) by making use of the

domain-specific knowledge.
3.2 Domain-Specific Representations

The most widely used technique to combine the domain-knowledge into evolutionary
algorithms is to design an encoding scheme for the solution space of the problem. Even though an
universal representation is possible for all problems, it could not be an efficient one. A representation
good for one problem domain may be extremely inconvenient and inefficient for another. For each
specific problem, there exist numerous encoding schemes in which some of them are natural and the
others may be tremendously unnatural. Even more, some of them use little knowledge of the problem
domain and the others may have grasped most of the important characteristics of the problem. Randomly
accepting a representation for the problem may result in inefficiency.

The travelling salesman problem (TSP) is a very good example. TSP can be presented as a 0-1
integer programming over a graph (Laporte, 1992). The decision variable X, = 1 means that the

salesman goes through the path from city i to city j, otherwise the salesman does not go through the path..
If the 0-1 encoding is the universal representation, then it is natural to encode a solution (tour) with »
cities into a 0-1 vector with nxn dimensions. Moreover if every two cities have a path, there are totally

2™ 0-1 vectors in the binary representation space. Obviously many vectors are infeasible. How many
vectors are needed to represent all feasible solutions of the TSP? Using an obvious domain-specific
knowledge, a feasible solution (tour) can be represented as a permutation of (/,2,...,n), an order of the
salesman’s travelling. There are at most »! individuals in permutation representation space! Therefore we

save 2" /n! times of the size of representation space by using the domain-specific knowledge.

It is the user’s responsibility to deeply exploit the domain knowledge, carefully analyse the
advantages of different candidate encoding schemes and choose an appropriate one from them. Although
this idea seems rather direct and easy to understand, it’s usually neglected by some practitioners.

3.3 Domain-Specific Local Search

Another technique to combine the domain-knowledge into evolutionary algorithms is to include
local search into the algorithmic logic. Based on the idea of searching over a subspace of local-optima,
hill B limbers derived from domain-related knowledge can be applied to each individual of the
population. At least two different types of incorporation of the local search into evolutionary algorithms
can be differentiated. One is the so-called memetic algorithm where the local search is applied to each
individual of the population and the resulting improvement replaces the original one or the worst one in
the population. Such kind of local search can be achieved by a modified formal mutation operator within
the framework of the formal memetic algorithm (Radcliffe & Surry, 1994). The other is the so-called



Baldwin effect where the local search is applied to each individual of the population, but instead of
replacing the original individual with the resulting improvement, the fitness value of the resulting
improvement is transferred to the original individual (Whitley et al., 1994). Such kind of local search can
be achieved by incorporating the local search in the fitness evaluation for an individual. These analyses
show that the technique of the domain-specific local search is actually a special case of the technique of
the domain-specific representation.

4 Case Study: Capacitated Lot-Sizing Problem
4.1 Formulation of Capacitated Lot-Sizing Problem

In this section, we will demonstrate the principles in last section by using a heuristic genetic
algorithm to multilevel capacitated lot-sizing problem (CLSP). CLSP can be mathematically formulated
as the following mixed integer programming (interpretations to the variables and constraints are omitted
here for simplicity, see for example Maes et al., 1991; Xie, 1995):
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The decision variables in CLSP are X,,, ¥, and /,,, among which ¥, is a 0-1 integer variable
and X,, [, are positive real variables. For the complicated structure of the solution space and the
constraints, it is inconvenient to encoding all these variables and use penalty to constraints’ conflicts. It is
easily to be seen that variables X, ¥, and /, are not independent and we hope X, ., I, can be
heuristically worked out from variables ¥, by making use of the problem-specific knowledge of the
lot-sizing problems. This leads to consider the setup pattern (variables Y,) as only decision variables,
then the most important thing during designing a genetic algorithm to CLSP is to decode the values of X,
and 1, from Y, and the known parameters of the lot-sizing problem.

According to Afentakis and Gavish (1986), there exists following property (usually named
“Zero-Switch” property) for uncapacitated lot-sizing problem, a simplified version of CLSP: There is an
optimal solution to uncapacitated lot-sizing problem in which X, /;, ; = 0. Making use of this important
domain-specific knowledge of the uncapacitated lot-sizing problems, we can heuristically build up the
relationships between real number variables and ¥, and the known parameters of the problem. Given a
production pattern (setups sequence) {¥,, i=1,--,N, r=1,-,7}, the production lot-sizes can be
determined according to "Zero-Switch" Property as following :

(i) If ¥, =0, then X, =0;

(ii) Ime =1, Y. =1 (< <T)and ¥ =0 forall 7, <7< 7,, then

71
X, =2d.+ XX, (7
=1 JeSW)

That is to say, whenever a setup is introduced for an item we produce enough quantity for this
item to satisfy the demands of integer number of periods between two successive setups. When no setup
is activated in period 1 for a product (item), this processing method may lead to backlogging in the first
few periods for this product and its successive parent products. In order to assure feasibility, the penalty
method is used to deal with the constraints that no backlogging is allowed. That is to say, we can change
the objective function to include penalties for backlogging. Before computing the fitness value of each
individual, the objective function values COSTU (Y, X,[I)is calculated according to the following

objective function:
N T
COSTU(Y, X, )=
i=l 1=
where /B is the penalty coefficient (a large enough positive number).
For capacitated lot-sizing problems, the optimal solution may not satisty “Zero-Switch”

property. In fact, the real number variables X, /, do not only dependent on the production pattern

N T
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(setups sequence) ¥, but also dependent on the available resources capacity C,,. In this situation, one
can firstly determine X, I, from Y, without considering the resource constraints and take this lot-size
schedule as an initial plan which will be further modified by considering the resources constraints. For
example, one can modify this initial lot-size plan by “shifting” techniques which has been widely used in
the heuristics for the lot-sizing problems (Clark & Armentano,1995; Roll & Karni, 1991).

The shifting procedure checks capacity feasibility of the initial lot-size schedule from the last
period backwards to period 1. In each period ¢, a capacity tightness index, ©,,, which is defined to be the
ratio of the total capacity for a resource needed to produce all the scheduled items in this period to the
total available capacity for this resource at this period, is calculated for each resource &:

CN,, :i(am *X,+ A4, *Y,).py =CN,/C,, . (k=12,..,K). )
i=1
where CN,, is the total capacity for a resource k£ needed to produce all the scheduled items in the period 1.
The remaining capacity for a resource & in the period 7 can be calculated as
CR,=C,-CN,  (k=12...K). (11

It is obvious that the resources capacities are enough to produce all the scheduled items in a
period 7 if the capacity tightness indexes are all less than or equal to one (i.e. p,, <1 forall k=1,2,..., K)
at this period. In this case, the shifting procedure moves to the period (#-7) and begins to check capacity
feasibility in this new period. If in some period ¢ the total capacity for a resource needed to produce all the
scheduled items in this period is larger than the total available capacity for this resource at the period

(i.e. oy > 1 for some k), infeasibility occurs for this resource k and one or more of the scheduled item(s)

in this period must be shifted to the previous period(s). If there are more than one such resources, the
procedure begins with the resource with the largest tightness index. In order to get a capacity-feasible
plan more efficiently, we only consider moving the excessive scheduled production quantity to the period
just before this period. In order to reduce as much as possible the possibility of any infeasibility resulted
from the shifting procedure for the materials between different stages, the items are shifted according to
the decreasing order of the indexes of the scheduled items in this period (i.e., from item N downto 1).
This is based on the observation that the item with a large index will not use an item with a small index as
its components. That's to say, beginning with item N and downto item 1, we move the excessive
production quantity of one or more scheduled items in this period to its previous period until the
capacity-unfeasibility for this resource in this period is eliminated. If there is (are) other infeasible
resource(s), we repeat this shifting procedure until all the infeasibility are eliminated. When the moving
processes are finished, the modified lot-size plan will be a feasible plan with respect to the capacity
constraints. The only infeasibility of this modified lot-size plan may be the backlogging for some items in
some periods and this will be considered by the penalty method similar to the cost function (8) for the
uncapacitated lot-sizing problem.

The shifting procedure goes successively from period 7" downto 1 and from the tightest resource to
the most flexible one within a period. While capacity infeasibility occurs in some period, move the
excessive production of one or more items in this period to the period just before current period to assure
capacity feasibility (If current period is the first period, then the production quantity for this item in this
period will be partly or completely lost). In this shifting or moving excessive production backwards
procedure, the remaining capacities of all the resources in these two successive periods are adjusted
through considering the shifted quantity and the possible saved or added setup times (i.e., the
setup-consumed capacities). The setup patterns of the shifted items in this two periods will be modified
whenever applicable as in memetic algorithm.

It should be noticed that, in this decoding (or called growth function constructing) procedure,
local-search is also implicitly incorporated and most constraints in CLSP is implicitly considered and
satisfied whenever possible. The detailed implementation and numerical evaluation of this heuristic
genetic algorithm can be found in Xie (1995).

5 Summary

Evolutionary algorithm is not an universal prescription to all diseases. Correct prescription to a
disease can only be made based on sufficient knowledge about the disease. This paper emphasises the
fundamental importance of the ways in which domain-specific knowledge may be systematically
exploited and incorporated into evolutionary algorithms, and suggests that domain-specific presentation
scheme and domain-specific local search be two basic starting points to combine problem-related
knowledge and the general structure of evolutionary algorithms. A heuristic genetic algorithm for
capacitated lot-sizing problems is used as an example to demonstrate these principles. We show how
evolutionary algorithms can be precisely designed to solve optimisation problem with complicated
structure of decision variables and constraints. The authors highly agree with Radcliffe and Surry (1995)



that more attention should be focused on how to analytically predict the performance of a specific
representation for a specified problem domain.
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