
Complexity and Algorithms for Two-Stage Flexible Flowshop
Scheduling with Availability Constraints

Jinxing Xie∗, Xijun Wang
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

jxie@math.tsinghua.edu.cn

Abstract

This paper considers the two-stage flexible flowshop scheduling problem with availability constraints. We

discuss the complexity and the approximability of the problem, and provide some approximation algorithms with

finite and tight worst case performance bounds for some special cases of the problem.

Keywords: Scheduling; Flexible flowshop; Availability constraints; Approximability; Approximation algorithms;

Worst-case analysis

1 Introduction

A flexible flowshop, which is also known as hybrid flowshop or flowshop with parallel machines, consists of a set of

machine centers with parallel machines. Scheduling problems for such kind of flowshops are firstly studied by Salvador

in 1973 [1]. From then on, the flexible flowshop scheduling problems with makespan objective have attracted a great

deal of attention.

For example, the two-stage problem F2(P) | · | Cmax is already proved to be NP-hard in the strong sense, even

in the case where there are only two machines in one stage and there is only a single machine in the other stage [2].

Various heuristics or approximation algorithms for these problems have been designed [3, 4, 5], for some of which

the corresponding worst case performance bounds and the average case performance bounds have been proved. Hall

[6], Schuurman and Woeginger [7] have discussed the existence of polynomial time approximation schemes (PTAS)

for flexible flowshop scheduling problems. Recently, the scheduling problems for flexible flow shops with sequence-

dependent setup times are considered, where some heuristics are proposed and their computational effectiveness are

examined [8, 9].

Most studies on scheduling problems assume that the machines are available at all times. In real industry settings,

however, a machine may not always be available in the scheduling period due to, for example, a breakdown (stochastic)

or preventive maintenance (deterministic). This paper only considers the scheduling problem under the deterministic

case, i.e., the unavailable time intervals called holes are deterministically known before the decision making for the

schedules starts.
∗Corresponding author. This research has been supported by NSFC Project No. 70471008.

2

In some models with availability constraints, a job started its processing but not finished before the unavailable

period can be resumed without restarting when the machine becomes available again, which is usually the case in the

food industry. The job is then called resumable. Otherwise, if a job started its processing but not finished before the

unavailable period must be restarted later, which usually occurs in steel industry, it is called nonresumable. There

is also a semiresumable case, in which a job started its processing but not finished before the unavailable period will

have to partially restart when the machine becomes available again [10]. This paper only considers the scheduling

problems in the resumable case.

Scheduling problems with limited machine availability have been studied to a less extent. Adiri et al. [11] showed

that a single machine problem with machine breakdowns isNP-hard if the breakdowns are known in advance. Schmidt

[12] studied parallel machine scheduling problems with availability constraints. Hwang and Chang [13] proved that

the makespan of the LPT (Longest Processing Time) schedule is bounded by twice the optimal makespan if no more

than half of the machines are allowed to be shutdown simultaneously. Lee [14] proved that the two-machine flowshop

problem with makespan objective and one unavailability period is NP-hard in the ordinary sense, and presented

a dynamic programming approach and some approximation algorithms. Kubiak et al. [15] proved that the two-

machine problem with arbitrary number of unavailability periods on one machine is NP-hard in the strong sense, and

proposed a branch and bound algorithm and some heuristic algorithms [16] . Lee [10] given the first discussion about

the semiresumable two-machine flow shop model and provided worst case performance analysis for some algorithms.

Espinouse et al. [17] studied both the resumable and the nonresumable two-machine flowshop models under the

no-wait environment. Recently, the flexible flowshop scheduling problems problems with limited machine availability

are firstly studied by Wang and Xie [18], in which a bround and bound algorithm is presented.

This paper discusses the complexity and approximability of two-stage flexible flowshop problems for the nonre-

sumable case with deterministic availability constraints. In the next section, we give the notations of the problem.

In Section 3, we point out the strongly NP-hardness firstly; then we prove the APX -hardness of the problems with

holes on the whole second stage, or on the whole first stage but with more than one machine at this stage. In Section

4, we analyze the worst case performance of two algorithms for the case where there is only one machine at the first

stage and only one hole on that machine. In section 5, we provide an algorithm with finite worst case performance

bound for the special case where the unavailable periods apply only on a part of machines at some machine centers.

In the last section, we conclude this paper with a short discussion.

2 Problem formulation

Let us suppose that the flexible flowshop consists of a set of m ≥ 2 machine centers [Z1, Z2, . . . , Zm] with center

Zj having mj ≥ 1 identical parallel machines {Mj1,Mj2, . . . , Mjmj
}. There are n jobs {Ji | 1 ≤ i ≤ n} to be

processed in the flowshop. Function p(Ji) = [pi1, pi2, . . . , pim] will denote the processing times required by Ji on

3

centers [Z1, Z2, . . . , Zm] respectively. For convenience unavailable periods will be called holes. We assume that the

holes do not overlap, i.e., on each machine the holes do not cross over with each other, since otherwise they should be

considered as one hole only. Therefore we can denote by sjk,g and ljk,g the starting time and the length, respectively,

of the hole g on the machine Mjk, numbered according to their starting times. Each machine can process at most

one job at a time and each job can be processed by at most one machine at a time. The objective considered is to

minimize the makespan of the schedule (the maximum completion time of all jobs).

We use in this paper the notation similar to the one described in [15]. Specifically, F2(P), hjk,g | · | Cmax represents

the two-stage flexible flowshop problem with an arbitrary number of holes on each machine. F2(P), h1k,g | · | Cmax

represents the problem with an arbitrary number of holes on each machine at the first stage but no holes on the

second stage. F2(P), h11,1 | · | Cmax represents the problem with one hole on machine M11 only. In this notation

hjk,g specifies the number of the hole(s) and the machine(s) on which they appear. If j or k is replaced by a positive

integer, it means that holes are only on those machines. Otherwise, holes will be allowed to be on all machines. If g is

replaced by a positive integer, it denotes the number of holes on the corresponding machine. Otherwise this number

is arbitrary.

3 NP-hardness and APX -hardness

Due to the strongly NP-hardness of both F2(P) | m1 ≥ 2,m2 = 1 | Cmax and F2(P) | m1 = 1,m2 ≥ 2 | Cmax [2],

Theorem 1 stands obviously.

Theorem 1 F2(P), h11,1 | m1 = 1,m2 ≥ 2 | Cmax, F2(P), h21,1 | m1 ≥ 2,m2 = 1 | Cmax, F2(P), h1k,1 | m1 ≥

2,m2 = 1 | Cmax and F2(P), h2k,1 | m1 = 1,m2 ≥ 2 | Cmax are NP-hard in the strong sense.

During the approximability discussions in the following, several specific notations will be used. C∗max(I) and

CH
max(I) denote, respectively, the optimal makespan and the makespan given by algorithm H for any instance I.

They are often abbreviated to C∗max and Cmax respectively. An algorithm for problems minimizing makespan is

called having worst case performance bound ρ if Cmax ≤ ρC∗max for all instances. From this definition it is easily to

see that ρ ≥ 1 always holds. Furthermore, the bound is called tight if, for all ε > 0, there exists instance I satisfying

Cmax > (ρ− ε)C∗max.

Theorem 2 A polynomial time algorithm for the problem F2(P), h21,1 | m1 ≥ 2,m2 = 1 | Cmax with a finite worst

case performance bound cannot be found unless P = NP.

Proof The theorem will be proved by a contradiction. Let us suppose now that there exists an algorithm H which

gives a solution in polynomial time for this problem with worst case bound R, i.e., CH
max(I) ≤ RC∗max(I) for all

instances of F2(P), h21,1 | m1 ≥ 2,m2 = 1 | Cmax. For any instance I ′ of problem F2(P) | m1 ≥ 2,m2 = 1 | Cmax and

for any integer y > 0, we construct instance I ′′ of F2(P), h21,1 | m1 ≥ 2,m2 = 1 | Cmax as follows: All are the same

4

to instance I ′ except that there is one hole with s21,1 = y, l21,1 = Ry on machine M21. We can see that there exists a

schedule satisfying Cmax ≤ y for instance I ′ if and only if the schedule generated by algorithm H satisfies Cmax ≤ y

for instance I ′′. This is inconsistent with the NP-hardness of F2(P) | m1 ≥ 2,m2 = 1 | Cmax unless P = NP.

Lemma 3 A polynomial time algorithm for the problem P, hk,1 | · | Cmax with a finite worst case bound cannot be

found unless P = NP.

Proof Similarly to the proof of Theorem 2, the existence of a polynomial time algorithm for P, hk,1 | · | Cmax with

a finite worst case bound will be inconsistent with the NP-hardness of P | · | Cmax unless P = NP [19].

From Lemma 3, Theorem 4 holds obviously.

Theorem 4 A polynomial time algorithm for the problem F2(P), h1k,1 | m1 ≥ 2,m2 = 1 | Cmax and F2(P), h2k,1 |

m1 = 1,m2 ≥ 2 | Cmax with a finite worst case bound cannot be found unless P = NP.

Corollary 5 A polynomial time algorithm for the problem F2(P), h1k,1, h21,1 | m1 ≥ 2,m2 = 1 | Cmax and

F2(P), h11,1, h2k,1 | m1 = 1,m2 ≥ 2 | Cmax with a finite worst case bound cannot be found unless P = NP.

However, unlike F2(P), h21,1 | m1 ≥ 2,m2 = 1 | Cmax, there exist polynomial time algorithms for F2(P), h11,1 |

m1 = 1,m2 ≥ 2 | Cmax with finite worst case bounds. This result can be seen from the discussions in the next section,

and it differs very much from the symmetry between F2(P) | m1 ≥ 2,m2 = 1 | Cmax and F2(P) | m1 = 1,m2 ≥ 2 |

Cmax.

4 Worst case performance of algorithms for F2(P), h11,1 | m1 = 1,m2 ≥ 2 | Cmax

4.1 List scheduling algorithm

In this algorithm, a list L (or permutation) of the job indices 1, 2, . . . , n is provided. Jobs are fed to the first machine

center Z1 in the order they appear on the list L. Since we have only one machine at Z1, the jobs processed at Z1

form a queue at the buffer between the center Z1 and Z2 in the same order L. Then the jobs are processed in the

order L, whenever the machine at Z2 becomes available.

Theorem 6 For any instance of F2(P), h11,1 | m1 = 1,m2 = µ ≥ 2 | Cmax, let f∗ and f be the finish time of an

optimal schedule and the schedule obtained by the list scheduling algorithm respectively. Then f
f∗ ≤ 4 − 1

µ , and this

bound is tight.

Proof In this problem, there is only one machine M11 in the first machine center, and there are µ identical machines

in the second machine center. Besides, there is only one hole and it is on M11, where the starting time and the length

of the hole are denoted by s11,1 and l11,1 respectively. If the tasks assigned to M11 by the list scheduling algorithm

are all before s11,1, f∗ and f will be the same respectively to those in the case the availability constraint is discarded.

From [4], we have f
f∗ ≤ 3− 1

µ .

5

Now suppose that the tasks assigned to M11 by the list scheduling algorithm are not all before s11,1. Let f1 be

the finish time on M11 of the schedule obtained by the list scheduling algorithm. First we process all n tasks {pi1}

on Z1. And we start the processing of any tasks of {pi2} only after the completions of all of {pi1} on Z1. Then the

processing of {pi2} on Z2 can be treated as a parallel-machine shop. The tasks pi1 and pi2, 1 ≤ i ≤ n, have to be

carried out in the order specified in the list. Let f2 be the finish time of all of {pi2} when they are processed in the

parallel-machine shop Z2 in the order of the list. It should be clear that

f1 ≤ s11,1 + l11,1 +
n∑

i=1

pi1; (1)

f ≤ f1 + f2. (2)

According to the assumptions of the problem, we have

f∗ ≥ s11,1 + l11,1; (3)

f∗ ≥ h11,1 +
n∑

i=1

pi1. (4)

Please note that there are µ identical machines in the second machine center. From [20], we have

f2

f∗2
≤ 2− 1

µ
, (5)

where f∗2 is the optimal finish time of the operations set {pi2} in the parallel-machine shop Z2. Besides, it is obvious

that

f∗ ≥ f∗2 . (6)

Using inequalities (1)–(6), we obtain

f

f∗
≤ f1 + f2

f∗

≤ s11,1 + l11,1 +
∑n

i=1 pi1

f∗
+

f2

f∗2

≤ 4− 1
µ

.

A worst case instance is constructed using the following job set J :

p[Ja] = [2µε, ε];

p[Jb] = [µL− (2µ− 1)ε, ε];

p[Jc(i)] = [ε, (µ− 1)L], 1 ≤ i ≤ µ− 1;

p[Jd(i)] = [ε, L], 1 ≤ i ≤ µ− 1;

p[Je] = [ε, µL];

6

where L À ε and the only hole on M11 is s11,1 = µL, l11,1 = ε. Using the processing sequence [Ja, Jb, Jc, Jd, Je], the

schedule obtained by the list scheduling algorithm is shown in Figure 1(a). The optimal schedule is shown in Figure

1(b) in the processing sequence [Jd, Je, Jc, Jb, Ja]. Therefore, we have

f

f∗
=

(4µ− 1)L− (2µ− 3)ε
µL + (2µ + 2)ε

=
(4µ− 1)− (2µ− 3)ε/L

µ + (2µ + 2)ε/L
.

Thus,

lim
ε/L→0

f

f∗
= 4− 1

µ
.

This completes the proof.

2µε

ε

µL−(2µ−1)ε

ε

ε ε

(µ−1)L

(µ−1)L

(µ−1)L

(µ−1)L

L L L

µL

ε···

···

M11

M21

M22

M23

M2,µ−1

M2µ

···

µL µL+ε

· · ·

(a) Schedule by list scheduling algorithm: f = (4µ− 1)L− (2µ− 3)ε

ε

L

L

L

L

µL

ε ε ε ε

(µ−1)L

(µ−1)L

(µ−1)L

(µ−1)L

µL−(2µ−1)ε ε

ε

2µε

ε

M11

M21

M22

M23

M2,µ−1

M2µ

··· ···

µL µL+ε

· · · · · ·

(b) Optimal schedule: f∗ = µL + (2µ + 2)ε

Figure 1: A worst case instance for list scheduling algorithm

4.2 LPT algorithm

In the LPT (Longest Processing Time) algorithm, we sort the job set according to the processing time on M11 in

non-increasing order, then we use the list scheduling algorithm.

Theorem 7 For any instance of F2(P), h11,1 | m1 = 1,m2 = µ ≥ 2 | Cmax, let f∗ and f be the finish time of an

optimal schedule and the schedule obtained by the LPT algorithm respectively. Then f
f∗ ≤ 7

2 − 1
µ , and this bound is

tight.

Proof The problem is the same as that of Theorem 6: There is only one machine M11 in the first machine center,

and there are µ identical machines in the second machine center. Besides, there is only one hole and it is on M11,

where the starting time and the length of the hole are denoted by s11,1 and l11,1 respectively. The only difference is

that now we use LPT algorithm instead of a general list scheduling algorithm. Similarly to the proof of Theorem 6,

if the tasks assigned to M11 by LPT algorithm are all before s11,1, we have f
f∗ ≤ 3− 1

µ from [4].

7

Now suppose that [J1, J2, · · · , Jb] and [Jb+1, · · · , Jn] are assigned respectively to M11 before and after the hole in

that order, where 0 ≤ b < n. Similarly to Theorem 6, we define f1, f∗2 and f2. Then inequalities (1)–(6) still hold.

Furthermore, we have

f1 = s11,1 + l11,1 +
n∑

i=b+1

pi1. (7)

Using equation (7), we obtain

f

f∗
≤ f1 + f2

f∗

=
s11,1 −

∑b
i=1 pi1

f∗
+

l11,1 +
∑n

i=1 pi1

f∗
+

f2

f∗

≤ s11,1 −
∑b

i=1 pi1

f∗
+ 3− 1

µ
. (8)

If b = 0, we have

s11,1 ≤ p11, (9)

f∗ ≥ s11,1 + l11,1 + p11. (10)

Then

s11,1 −
∑b

i=1 pi1

f∗
=

s11,1

f∗

≤ s11,1

s11,1 + l11,1 + p11

≤ 1
2
. (11)

If b ≥ 1, from our algorithm we have
b∑

i=1

pi1 ≤ s11,1 <
b+1∑

i=1

pi1. (12)

Then

s11,1 −
∑b

i=1 pi1

f∗
≤ pb+1,1

l11,1 +
∑n

i=1 pi1

≤ pb+1,1

pb,1 + pb+1,1

≤ 1
2
. (13)

So we can see that f
f∗ ≤ 7

2 − 1
µ holds for all instances.

The following instance shows that this bound is tight. The job set is given as:

p[Ja] = [µ
2 L + ε, ε];

p[Jb] = [µ
2 L− (2µ− 1)ε, ε];

p[Jc(i)] = [ε, (µ− 1)L], 1 ≤ i ≤ µ− 1;

p[Jd(i)] = [ε, L], 1 ≤ i ≤ µ− 1;

p[Je] = [ε, µL];

8

µ
2 L+ε µ

2 L−(2µ−1)ε ε

ε ε

ε

(µ−1)L µL

(µ−1)L

(µ−1)L

(µ−1)L

L L

ε···

···

···

···

M11

M21

M22

M23

M2,µ−1

M2µ

µ
2 L µ

2 L+ε

(a) Schedule by LPT algorithm: f = (7
2
µ− 1)L− (2µ− 4)ε

ε ε

L

L

L

L

ε ε µ
2 L−(2µ−1)ε µ

2 L+ε

ε

µL

(µ−1)L

(µ−1)L

(µ−1)L

(µ−1)L

· ···

······

M11

M21

M22

M23

M2,µ−1

M2µ

ε

µ
2 L+εµ

2 L

(b) Optimal schedule: f∗ = µL + µε

Figure 2: A worst case instance for LPT algorithm

where L À ε and the only hole is on M11 with s11,1 = µ
2 L, l11,1 = ε. The schedule obtained by LPT algorithm is

shown in Figure 2(a) in the processing sequence [Ja, Jb, Jc, Jd, Je]. The optimal schedule is shown in Figure 2(b) in

the processing sequence [Jd, Je, Jc, Jb, Ja]. Therefore, we have

lim
ε/L→0

f

f∗
=

7
2
− 1

µ
.

This completes the proof.

5 Algorithm for a special case of F2(P), h1k,1 | m1 ≥ 2,m2 = 1 | Cmax

From the previous discussions, we know that the flexible flowshop sheduling problems with availability constraints

are difficult to be solved because of their APX -hardness properties. According to Theorem 4, both the problems

F2(P), h1k,1 | m1 ≥ 2,m2 = 1 | Cmax and F2(P), h2k,1 | m1 = 1,m2 ≥ 2 | Cmax are APX -hard. However, in the

industrial reality, it’s unusual that all the machines at one machine center are breakdown in the same time. By

making use of some special limitations on the availability constraints on machines, the corresponding problem might

be much easier to be solved. For example, Hwang and Chang [13], Cheng and Wang [21] make some efforts toward

this direction for parallel machine scheduling and flowshop scheduling, respectively. According to their work, it will

be possible to approximate the problems with unavailable periods only on a part of machines at some machine centers.

However, they do not consider the flexible flowshop problems which are the focus of this paper. In fact, as we can

see from the following discussion, if we relax the constraints that the holes can be presented on all the machines

at all machine centers, then the flexible flowshop problems might not be APX -hard anymore. For example, under

the situation where at any time the number of unavailable machines does not exceed one half of the number of all

the machines in each machine center, there exist polynomial time algorithms with finite worst case bounds for the

9

problem F2(P), h1k,1 | m1 ≥ 2,m2 = 1 | Cmax. One algorithm for this problem can be described as follows:

Step 0: Sort all the jobs in the non-increasing order in terms of pi1 and denote the sequence of jobs as LJ1. That’s

to say, LJ1 is the LPT sequence of jobs in terms of pi1.

Step 1: Assign the jobs to the first machine center Z1 for processing as early as possible in according to the

sequence LJ1. Let the completion time for job i at Z1 be Ci1. Sort all the jobs in the non-decreasing order in terms

of Ci1 and denote the new sequence of jobs as LJ2.

Step 2: Assign the jobs to the machine in machine center Z2 for processing as early as possible in according to

the sequence LJ2.

Step 3: Calculate the makespan and stop.

Theorem 8 For any instance of F2(P), h1k,1 | m1 ≥ 2,m2 = 1 | Cmax where at any time the number of unavailable

machines does not exceed one half of the number of the machines (at the first stage), let f∗ and f be the makespan

of an optimal schedule and the schedule obtained by the above algorithm respectively. Then f
f∗ ≤ 3.

Proof Consider the sub-problem with only the first machine center as a classical parallel scheduling problem P | · |

Cmax. Let f∗1 and f1 be the makespan of the optimal schedule and the schedule obtained by the LPT algorithm [13]

respectively. Then we have

f∗ ≥ f∗1 , (14)

f∗ ≥
n∑

i=1

pi2, (15)

f ≤ f1 +
n∑

i=1

pi2. (16)

According to [13],

f1

f∗1
≤ 2. (17)

From (14)–(17),

f

f∗
≤ f1 +

∑n
i=1 pi2

f∗
≤ f1

f∗
+

∑n
i=1 pi2

f∗
≤ 3. (18)

This completes the proof.

6 Discussion

In this paper, we present firstly the formulation of two-stage flexible flowshop problems with available constraints.

Then we discuss the complexity and approximability of these models. We show that they are much more difficult to

approximate than the case without availability constraints, except F2(P), h11,1 | m1 = 1,m2 ≥ 2 | Cmax. However,

10

if we relax the constraints that the holes can be presented on all the machines at all machine centers, then these

problems might not be APX -hard anymore.

References

[1] M. S. Salvador, A solution to a special case of flow shop scheduling problems, in: S. E. Elmaghraby, (Ed.),

Symposium on the Theory of Scheduling and Its Applications, Springer-Verlag, Berlin, 83C91, (1973).

[2] J.A. Hoogeveen, J.K. Lenstra, B. Veltman, Preemptive scheduling in a two-stage multiprocessor flow shop is

NP-hard, European Journal of Operational Research 89, 172–175, (1996).

[3] R. J. Wittrock, An adaptive scheduling algorithm for flexible flow lines, Operations Research 36, 445–453,

(1988).

[4] C. Sriskandarajah, S.P. Sethi, Scheduling algorithms for flexible flowshops: Worst and average case performance,

European Journal of Operational Research 43, 143–160, (1989).

[5] B. Chen, Analisis of classes of heuristics for scheduling a tow-stage flow shop with parallel machines at one stage,

Journal of the Operational Research Society 46, 234–244, (1995).

[6] L.A. Hall, Approximability of flow shop scheduling, Mathematical Programming 82, 175–190, (1998).

[7] P. Schuurman, G. J. Woeginger, A polynomial time approximation scheme for the two-stage multiprocessor flow

shop problem, Theoretical Computer Science 237, 105–122, (2000).

[8] M. E. Kurz, A. G. Ronald, Comparing scheduling rules for flexible flow lines, International Journal of Production

Economics 85, 371–388, (2003).

[9] M. E. Kurz, A. G. Ronald, Scheduling flexible flow lines with sequence-dependent setup times, European Journal

of Operational Research 159, 66–82 (2004).

[10] C.Y. Lee, Two-machine flowshop scheduling with availability constraints, European Journal of Operational

Research 114, 420–429, (1999).

[11] I. Adiri, J. Bruno, E. Frostig, A.H.G. Rinnooy Kan, Single machine flow-time scheduling with a single breakdown,

Acta Informatica 26, 679–696, (1989).

[12] G. Schmidt, Scheduling on semi-identical processors, Zeitschrift für Operations Research 28, 153–162, (1984).

[13] H.C. Hwang, S.Y. Chang, Parallel machines scheduling with machine shutdowns, Computers and Mathematics

with Applications 36, 21–31, (1998).

11

[14] C.Y. Lee, Minimizing the makespan in the two-machine flowshop scheduling problem with an availability con-

straint, Operations Research Letters 20, 129–139, (1997).

[15] W. Kubiak, J. BÃlazewicz, P. Formanowicz, J. Breit, G. Schmidt, Two machine flow shops with limited machine

availability, European Journal of Operational Research 136, 528–540, (2002).

[16] J. BÃlazewicz, J. Breit, P. Formanowicz, W. Kubiak, G. Schmidt, Heuristic algorithms for the two-machine

fowshop with limited machine availability, Omega 29, 599–608, (2001).

[17] M.L. Espinouse, P. Formanowicz, B. Penz, Complexity results and approximation algorithms for the two machine

no-wait flow-shop with limited machine availability, Journal of the Operational Research Society 52, 116–121,

(2001).

[18] X. Wang, J. Xie, Branch and bound algorithm for flexible flowshop with limited machine availability, Asian

Information-Science-Life 1, 241-248, (2002).

[19] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theorey of NP-Completeness, Freeman,

San Francisco, CA, (1979).

[20] R.L. Graham, Bounds for certain multiprocessing anomalies, The Bell System Technical Journal 45, 1563–1581,

(1966).

[21] T.C.E. Cheng, G.Q. Wang, Two-machine flowshop scheduling with consecutive availability constraints, Infor-

mation Processing Letters 71, 49–54, (1999).

