
SCIENCE CHINA
Mathematics

. ARTICLES . March 2011 Vol. 54 No. 3: 623–632

doi: 10.1007/s11425-010-4112-6

c© Science China Press and Springer-Verlag Berlin Heidelberg 2010 math.scichina.com www.springerlink.com

A class of polynomially solvable 0-1 programming
problems and an application

WANG Miao, XIE JinXing∗ & XIONG HuaChun

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Email: jiaojian123@sina.com, jxie@math.tsinghua.edu.cn, xionghc06@gmail.com

Received January 31, 2010; accepted June 2, 2010; published online October 18, 2010

Abstract It is well known that general 0-1 programming problems are NP -Complete and their optimal

solutions cannot be found with polynomial-time algorithms unless P=NP . In this paper, we identify a specific

class of 0-1 programming problems that is polynomially solvable, and propose two polynomial-time algorithms

to find its optimal solutions. This class of 0-1 programming problems commits to a wide range of real-world

industrial applications. We provide an instance of representative in the field of supply chain management.
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1 Introduction

For the large scale 0-1 programming problems, people usually suffer from the so-called “dimension disas-
ter”, i.e., the time used for finding the exact solution increases exponentially with respect to the scale of
the problem (see, e.g., [4] for details). When this happens, various heuristic approaches, such as branch
and bound (e.g., [7]), genetic algorithms (e.g., [3]), and probabilistic search (e.g., [2]) should be used to
find the approximate solutions instead of the exact one. For the 0-1 programming problems heuristic al-
gorithms are not always needed, especially with some instances of special structures. Padberg [5] showed
that some special set packing problems, which can be modeled as 0-1 programming problems with perfect
0-1 coefficient matrix, can be solved by solving their linear programming (LP) relaxation problems with
a polynomial-time algorithm. Similar results hold for the set covering and the set partitioning problems
with ideal matrices (see [6] for details). Bilitzky and Sadeh [1] identified sufficient conditions on the co-
efficient matrix under which the linear 0-1 programming problem can be polynomially solved by solving
its LP relaxation problem.

The papers [1, 5, 6] concerned about establishing efficient algorithms to find the optimal solutions for
the special linear 0-1 programming problems. While in this paper, we identify a class of nonlinear 0-1
programming problems that can be solved by polynomial-time algorithms. Specifically, we consider the
following 0-1 programming problem:

Min f(x) =
2∑

j=1

(
bj

n∑

i=1

aixji

)s

−
2∑

j=1

n∑

i=1

cjixji, (1)
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s.t. x2i > x1i, for any i = 1, 2, . . . , n,

x = (x11, . . . , x1n, x21, . . . , x2n) ∈ {0, 1}2n
,

where 0 < s < 1, ai > 0, bj > 0, cji > 0, and n is an integer. In the following discussion, we will provide
two polynomial-time algorithms to solve this problem and present one of its applications in supply chain
management.

The rest of this paper proceeds as follows. In Section 2, we propose and analyze two polynomial-time
algorithms to solve Problem (1). In Section 3, we give a real-world industrial application of Problem (1).
In Section 4, we extend the results in Section 2 to a more general case.

2 Algorithms

For convenience, we assume that there are n items, which are indexed by 1, 2, . . . , n. Each item i

possesses attributes ai and cji (j = 1, 2). Denote the set consisting of all items by S = {1, 2, . . . , n}. For
any feasible solution x = (x11, . . . , x1n, x21, . . . , x2n) of Problem (1), define S1(x) = {i | x1i = x2i = 1},
S2(x) = {i | x1i = 0, x2i = 1}, S3(x) = {i | x1i = x2i = 0}. Clearly, S1(x) ∪ S2(x) ∪ S3(x) = S and
Sk(x) ∩ Sl(x) = ∅ for any k 6= l. Sort all items in the ascending order by c1i/ai, and define R1(i) as
the ranking position of item i (i = 1, 2, . . . , n). Sort all items in the ascending order by c2i/ai, and
define R2(i) as the ranking position of item i (i = 1, 2, . . . , n). Sort all items in the ascending order
by (c1i + c2i)/ai, and define R3(i) as the ranking position of item i (i = 1, 2, . . . , n). For example, if
k1 = arg maxi{c1i/ai | i = 1, 2, . . . , n}, then R1(k1) = n.

Theorem 2.1. Assume R1(i), R2(i) and R3(i), i = 1, 2, . . . , n, are determined. Then any optimal
solution x∗ for Problem (1) satisfies the following properties:

(a) R1(k) < R1(l) for any k ∈ S2(x∗), l ∈ S1(x∗);
(b) R2(k) < R2(l) for any k ∈ S3(x∗), l ∈ S2(x∗);
(c) R3(k) < R3(l) for any k ∈ S3(x∗), l ∈ S1(x∗).

Proof. We prove it by contradiction. Suppose there exists an optimal solution x∗ violating at least
one of the three properties, e.g., (c) (Here we only provide the proof when x∗ violates (c); proofs for the
others with (a) or (b) violated are similar).

Since x∗ violates (c), there exist k ∈ S3(x∗) and l ∈ S1(x∗) such that (c1k + c2k)/ak > (c1l + c2l)/al.
By the definitions of S3(x∗) and S1(x∗), we have x∗1k = x∗2k = 0, x∗1l = x∗2l = 1. Choose z =
(z11, . . . , z1n, z21, . . . , z2n) ∈ {0, 1}2n, where z1k = z2k = 1 and zji = x∗ji for any j = 1, 2 and i 6= k.
The theorem is clearly true by contradiction if it holds that f(z) < f(x∗), which is equivalent to

(
b1

∑

i6=k,l

aix
∗
1i + b1al + b1ak

)s

−
∑

i6=k,l

c1ix
∗
1i − c1l − c1k

+
(

b2

∑

i6=k,l

aix
∗
2i + b2al + b2ak

)s

−
∑

i6=k,l

c2ix
∗
2i − c2l − c2k

<

(
b1

∑

i6=k,l

aix
∗
1i + b1al

)s

−
∑

i6=k,l

c1ix
∗
1i − c1l +

(
b2

∑

i6=k,l

aix
∗
2i + b2al

)s

−
∑

i6=k,l

c2ix
∗
2i − c2l. (2)

Denote A1 = b1

∑
i6=k,l aix

∗
1i, A2 = b2

∑
i6=k,l aix

∗
2i. Then Inequality (2) is equivalent to

(A1 + b1al + b1ak)s − (A1 + b1al)s + (A2 + b2al + b2ak)s − (A2 + b2al)s < c1k + c2k. (3)

Consider the function g(η) = ηs. By the Mean Value Theorem, we know that there exist β1 ∈ (A1

+ b1al, A1 + b1al + b1ak), β2 ∈ (A2 + b2al, A2 + b2al + b2ak) such that

(A1 + b1al + b1ak)s − (A1 + b1al)s = b1ak · sβs−1
1

and
(A2 + b2al + b2ak)s − (A2 + b2al)s = b2ak · sβs−1

2 .
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Thus, Inequality (3) is equivalent to

b1sβ
s−1
1 + b2sβ

s−1
2 < (c1k + c2k)/ak. (4)

To prove this theorem, we only need to prove Inequality (4).
Choose y = (y11, . . . , y1n, y21, . . . , y2n) ∈ {0, 1}2n, where y1l = y2l = 0 and yji = x∗ji for any j = 1, 2

and i 6= l. Since x∗ is the optimal solution of Problem (1), we have f(x∗) 6 f(y). Thus, we have

(A1 + b1al)s −As
1 + (A2 + b2al)s −As

2 6 c1l + c2l. (5)

By the Mean Value Theorem, there exist α1 ∈ (A1, A1 + b1al) and α2 ∈ (A2, A2 + b2al) such that
(A1 + alb1)s −As

1 = alb1 · sαs−1
1 and (A2 + alb2)s −As

2 = alb2 · sαs−1
2 . Thus, Inequality (5) is equivalent

to
b1 · sαs−1

1 + b2 · sαs−1
2 6 (c1l + c2l)/al. (6)

For ai > 0 (i = 1, 2, . . . , n) and bj > 0 (j = 1, 2), we have β1 > α1, β2 > α2. Note that 0 < s < 1. Then
sηs−1 is strictly decreasing in η, which together with the condition that (c1l + c2l)/al 6 (c1k + c2k)/ak

implies
b1 · sβs−1

1 + b2 · sβs−1
2 < b1 · sαs−1

1 + b2 · sαs−1
2 6 (c1l + c2l)/al 6 (c1k + c2k)/ak.

Therefore, Inequality (4) is true. This completes the proof. 2

Theorem 2.1 characterizes the necessary conditions for the optimal solution of Problem (1).

Corollary 2.1. Assume that R1(i), R2(i) and R3(i), i = 1, 2, . . . , n, are determined and that x satisfies
the three properties in Theorem 2.1.

(a) Let k = max{R3(i) | i ∈ S3(x)} and define G = {i ∈ S | R3(i) 6 k}. Then we have S3(x) ⊆ G and
S1(x) ∩G = ∅;

(b) Let p = max{R2(i) | i ∈ S3(x)} and define P3 = {i ∈ G | R2(i) 6 p}. Then we have S3(x) = P3;
(c) Let q = max{R1(i) | i ∈ S2(x)} and define P2 = {i ∈ S\P3 | R2(i) 6 q}. Then we have

S2(x) = P2.

Proof. Part (a). If S3(x) * G, then there exists an item i in S3(x) such that R3(i) > k, which
contradicts the definition of k. If S1(x)∩G 6= ∅, then there exists an item i in S1(x) such that R3(i) 6 k.
Clearly, R3(i) 6= k, since the item i0 that satisfies R3(i0) = k belongs to S3(x) and S1(x) ∩ S3(x) = ∅.
Therefore, we have R3(i) < R3(i0) with i ∈ S1(x) and i0 ∈ S3(x), which contradicts with Theorem 2.1.

Part (b). Using a similar method to that in Part (a), one can prove that S3(x) ⊆ P3 and S2(x)∩P3 = ∅.
Note that P3 ⊆ G and S1(x) ∩G = ∅, then we have P3 ∩ (S2(x) ∪ S1(x)) = ∅, which, together with the
facts S1(x) ∪ S2(x) ∪ S3(x) = S and Sk(x) ∩ Sl(x) = ∅ for k 6= l, indicates P3 ⊆ S3(x). This completes
the proof of Part (b).

The proof of Part (c) is similar to that of Part (b), so we omit it here. 2

Based on Corollary 2.1, we propose the following algorithm.

Algorithm 2.1.
Step 1: Solve R1(i), R2(i) and R3(i) (i = 1, 2, . . . , n) by some sorting procedure.

Let k = 0, x∗ = (0, 0, . . . , 0) and v∗ = 0.
Step 2: Let

G =

{
∅, if k = 0;

G ∪ {i | R3(i) = k}, if k > 0.

For p = 0, 1, . . . , k

Let P3 = {i1, . . . , ip} ⊆ G, where i1, . . . , ip are p items such that R2(i1), . . . , R2(ip) are the p

smallest numbers in {R2(i) | i ∈ G}.
For q = 0, 1, . . . , n− p

P2 = {i′1, . . . , i′q} ⊆ S\P3, where i′1, . . . , i
′
q are q items such that R1(i′1), . . . , R1(i′q) are

the q smallest numbers in {R1(i) | i ∈ S\P3}.
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Let P1 = S\(P2 ∪ P3).
Define x = (x11, x12, . . . , x1n, x21, . . . , x2n) such that x1i = x2i = 1 if i ∈ P1; x1i =
0, x2i = 1 if i ∈ P2; x1i = x2i = 0 if i ∈ P3.
Calculate v = f(x).
If v < v∗, then let x∗ = x, and v∗ = v.

End
End

Step 3: Let k = k + 1.
If k 6 n, go to Step 2.
Else, stop and output x∗ as an optimal solution and v∗ as the optimal value.

Theorem 2.2. Algorithm 2.1 is able to find the optimal solution of Problem (1). The complexity of
Algorithm 2.1 is O(n3).

Proof. To show that Algorithm 2.1 can find the optimal solution of Problem (1), we only need to prove
that all feasible solutions satisfying properties (a)–(c) in Theorem 2.1 (for R1(i), R2(i), R3(i) generated
in Step 1 of Algorithm 2.1) are examined by Algorithm 2.1.

For any feasible solution x satisfying properties (a)–(c) in Theorem 2.1, let k0 = max{R3(i) | i ∈ S3(x)},
and p0, q0 be the total numbers of elements in S3(x) and S2(x), respectively. Then x is examined by
Algorithm 2.1 when k = k0, p = p0 and q = q0 (in this case, P1 = S1(x), P2 = S2(x), P3 = S3(x)).

Clearly, Step 1 runs in O(n log n), and Step 2 runs in O(n2) for any given k. Note that k varies from
0 to n, then Algorithm 2.1 possesses a complexity of O(n3) = O(max{n log n, n3}). 2

Next, we will propose another algorithm with a lower complexity. Before presenting this algorithm,
we will provide two sub-algorithms, which are called in this algorithm.

Sub-Algorithm 2.1.
Input: A set G ⊆ S.
Step 1: Denote the total number of elements in G by |G|. Sort the items in G in ascending order by

c1i/ai, and save the ranking position of each item i in G as R(i).
Let k = 1, F ∗1 = ∅, F ∗2 = G, v∗ = (b1

∑
i∈G ai)s −∑

i∈G c1i.
Step 2: Let F1 = {i1, . . . , ik} such that R(i1) = 1, . . . , R(ik) = k, and F2 = G\F1.

Calculate v = (b1

∑
i∈F2

ai)s −∑
i∈F2

c1i.
If v < v∗, then let v∗ = v, F ∗1 = F1, F ∗2 = F2.

Step 3: Let k = k + 1.
If k 6 |G|, go to Step 2.
Else, stop and output F ∗1 , F ∗2 , v∗.

Sub-Algorithm 2.2.
Input: A set G ⊆ S.
Step 1: Denote the total number of elements in G by |G|. Sort the items in G in ascending order by

c2i/ai, and save the ranking position of each item i in G as R(i).
Let k = 1, F ∗1 = ∅, F ∗2 = G, v∗ = (b2

∑
i∈S ai)s −∑

i∈S c2i.
Step 2: Let F1 = {i1, . . . , ik} such that R(i1) = 1, . . . , R(ik) = k, and F2 = G\F1.

Calculate v = (b2

∑
i∈F2

ai + b2

∑
i∈S\G ai)s −∑

i∈F2
c2i −

∑
i∈S\G c2i.

If v < v∗, then let v∗ = v, F ∗1 = F1, F ∗2 = F2.
Step 3: Let k = k + 1.

If k 6 |G|, go to Step 2.
Else, stop and output F ∗1 , F ∗2 , v∗.

Based on these two sub-algorithms, we present the main algorithm as follows.

Algorithm 2.2.
Step 1: Solve R1(i), R2(i), and R3(i) (i = 1, 2, . . . , n) by some sorting procedure.

Let k = 0, x∗ = (0, 0, . . . , 0) and v∗ = 0.



Wang M et al. Sci China Math March 2011 Vol. 54 No. 3 627

Step 2: Let

G1 =

{
∅, if k = 0;

G1 ∪ {i | R3(i) = k}, if k > 0,
G2 =

{
S, if k = 0;

G2\{i | R3(i) = k}, if k > 0.

Call Sub-Algorithm 2.1 with input G2, and save the output F ∗1 → P̃2, F ∗2 → P1, v∗ → v2.
Call Sub-Algorithm 2.2 with input G1, and save the output F ∗1 → P3, F ∗2 → P̄2, v∗ → v1.
Let P2 = P̄2 ∪ P̃2.
Define x = (x11, x12, . . . , x1n, x21, . . . , x2n) such that x1i = x2i = 1 if i ∈ P1; x1i = 0, x2i = 1 if
i ∈ P2; x1i = x2i = 0 if i ∈ P3.
If v1 + v2 < v∗, then let x∗ = x and v∗ = v1 + v2.

Step 3: Let k = k + 1.
If k 6 n, go to Step 2.
Else stop and output x∗ as an optimal solution and v∗ as the optimal value.

Here we show that Algorithm 2.2 indeed finds the optimal solution of Problem (1).

Lemma 2.1. Assume that R1(i), R2(i) and R3(i), i = 1, 2, . . . , n, are determined. For any optimal
solution x∗ of Problem (1), denote k∗ = max{R3(i) | i ∈ S3(x∗)}. Then we have

(1) x∗1i = 0, for all i ∈ {i | R3(i) 6 k∗};
(2) x∗2i = 1, for all i ∈ {i | R3(i) > k∗}.

Proof. It is obvious from Theorem 2.1 and the definitions of x∗, k∗ and S3(x∗). 2

Lemma 2.2. For any given input G ⊆ S, let

g1(F ) =
(

b1

∑

i∈F

ai

)s

−
∑

i∈F

c1i, g2(F ) =
(

b2

∑

i∈F

ai + b2

∑

i∈S\G
ai

)s

−
∑

i∈F

c2i

be two functions defined on {F | F ⊆ G}.
(a) The output F ∗2 of Sub-Algorithm 2.1 satisfies g1(F ∗2 ) = min{g1(F ) | F ⊆ G};
(b) The output F ∗2 of Sub-Algorithm 2.2 satisfies g2(F ∗2 ) = min{g2(F ) | F ⊆ G}.

Proof. The proof is similar to that of Theorem 2.1. 2

Theorem 2.3. Algorithm 2.2 is able to find the optimal solution of Problem (1). The complexity of
Algorithm 2.2 is O(n2).

Proof. We only need to prove that any solution that satisfies the two properties in Lemma 2.1 can be
dominated by some solution examined in Algorithm 2.2.

For any feasible solution y satisfying the two properties in Lemma 2.1, let k0 = max{R3(i) | i ∈ S3(y)},
S̄2(y) = {i ∈ S2(y) | R3(i) < k0}, S̃2(y) = S2(y)\S̄2(y). Consider Step k = k0 of Algorithm 2.2. Denote
by x(k0) the solution generated in Step k = k0 of Algorithm 2.2. Then G

(k0)
1 , G

(k0)
2 , P

(k0)
1 , P̃

(k0)
2 , P̄

(k0)
2 ,

P
(k0)
3 denote the corresponding items G1, G2, P1, P̃2, P̄2, P3 generated in Step k = k0 of Algorithm 2.2.

To prove that Algorithm 2.2 can find an optimal solution of Problem (1), we only need to prove that
f(x(k0)) 6 f(y).

By the definition of y, we have y1i = 0 for all i ∈ {i | R3(i) 6 k0} = G
(k0)
1 , which means i /∈ S1(y) for

any i ∈ {i | R3(i) 6 k0} = G
(k0)
1 . Similarly, we have i /∈ S3(y) for any i ∈ {i | R3(i) > k0} = G

(k0)
2 . Thus,

it holds that S3(y) ∪ S̄2(y) = G
(k0)
1 and S1(y) ∪ S̃2(y) = G

(k0)
2 . Since y satisfies the properties (1)–(2) of

Lemma 2.1, we obtain the following equation:

f(y) =
(

b1

∑

i∈G
(k0)
1

aiy1i + b1

∑

i∈G
(k0)
2

aiy1i

)s

+
(

b2

∑

i∈G
(k0)
1

aiy2i + b2

∑

i∈G
(k0)
2

aiy2i

)s

−
∑

i∈G
(k0)
1

c1iy1i −
∑

i∈G
(k0)
2

c1iy1i −
∑

i∈G
(k0)
1

c2iy2i −
∑

i∈G
(k0)
2

c2iy2i

=
(

b1

∑

i∈G
(k0)
2

aiy1i

)s

+
(

b2

∑

i∈G
(k0)
1

aiy2i + A

)s

−
∑

i∈G
(k0)
2

c1iy1i −
∑

i∈G
(k0)
1

c2iy2i −B
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=
(

b1

∑

i∈S1(y)

ai

)s

+
(

b2

∑

i∈S̄2(y)

ai + A

)s

−
∑

i∈S1(y)

c1i −
∑

i∈S̄2(y)

c2i −B,

where A = b2

∑
i∈G

(
2k0)

ai, B =
∑

i∈G
(
2k0)

c2i. Noticing that x
(k0)
1i = 0 for i ∈ G

(k0)
1 and x

(k0)
2i = 1 for

i ∈ G
(k0)
2 (see Algorithm 2.2), we then have the following inequality by Lemma 2.2:

f(y) =
(

b1

∑

i∈S1(y)

ai

)s

+
(

b2

∑

i∈S̄2(y)

ai + A

)s

−
∑

i∈S1(y)

c1i −
∑

i∈S̄2(y)

c2i −B

>
(

b1

∑

i∈P
(k0)
1

ai

)s

+
(

b2

∑

i∈P̄
(k0)
2

ai + A

)s

−
∑

i∈P
(k0)
1

c1i −
∑

i∈P̄
(k0)
2

c2i −B

=
(

b1

∑

i∈G
(k0)
2

aix
(k0)
1i

)s

+
(

b2

∑

i∈G
(k0)
1

aix
(k0)
2i + A

)s

−
∑

i∈G
(k0)
2

c1ix
(k0)
1i −

∑

i∈G
(k0)
1

c2ix
(k0)
2i −B

= f(xk0),

which indicates that y is dominated by x(k0). This implies that Algorithm 2.2 can find an optimal solution
of Problem (1).

Clearly, Step 1 runs in O(n log n), while Step 2 runs in O(n) for a given k, in which Sub-Algorithm 2.1
requires n− k +1 times of calculations, and Sub-Algorithm 2.2 requires k +1 times of calculations. Note
that k varies from 0 to n, then Algorithm 2.2 possesses with a complexity of O(n2) = O(max{n log n, n2}).
The proof is complete. 2

Theorems 2.2 and 2.3 suggest that the “dimension disaster” will not be a problem, because the specific
class of 0-1 programming problems described by Problem (1) can be solved by the two polynomial-time
algorithms proposed above. Consequently, whenever a large-scale problem in industrial practice can be
modeled as a special case of Problem (1), the optimal solution can be obtained with a polynomial-time
algorithm.

3 An application

In this section, we provide a real-world industrial example. Early order commitment (EOC) is one of
the coordinating strategies in supply chain management. Zhao et al. [10] conducted, by simulations,
a comprehensive study of the impacts of EOC on supply chain performance under various operational
conditions. The first analytical model on EOC was developed in [11], which studied the effectiveness
of EOC in a two-level supply chain consisting of a single manufacturer and a single retailer. Xie et al.
[8] extended the results of [11] to a two-level supply chain with a single supplier and multiple retailers.
However, in [8], the authors did not provide any polynomial-time algorithm to find the optimal EOC
periods to minimize the expected holding and shortage cost per period for the whole supply chain. Xiong
et al. [9] provided a polynomial-time algorithm to find such optimal EOC periods by polynomially solving
a class of 0-1 programming problems, which is a special case of Problem (1) in the present paper.

All the above papers discussed two-level supply chains, while in this section, we consider a three-level
supply chain, consisting of a supplier, a wholesaler and multiple retailers. Denote Ls as the manufacturing
lead time of the supplier, Lw as the delivery lead time from the supplier to the wholesaler, and Li as the
delivery lead time from the wholesaler to the retailer i. Under the EOC strategy, retailer i (i = 1, 2, . . . , n)
places its order xi periods in advance, 0 6 xi 6 Ls + Lw + 2. When Ls + 1 < xi 6 Ls + Lw + 2, the
wholesaler will share the EOC information of retailer i to the supplier. Denote x = (x1, x2, . . . , xn).
Following the similar method to that in [11], we have that the total cost of the three-level supply chain
(for i.i.d. demand over time) is

SC1(x) = rs

√√√√
n∑

i=1

σ2
i (Ls + 1− (xi − Lw − 1)+)+rw

√√√√
n∑

i=1

σ2
i (Lw + 1− xi)++

n∑

i=1

riσi

√
Li + xi + 1, (7)
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where rs is the supplier’s cost parameter, rw is the wholesaler’s cost parameter, ri (i = 1, 2, . . . , n) is the
cost parameter of retailer i, and σ2

i (i = 1, 2, . . . , n) is the variance of the demand faced by retailer i. The
following proposition characterizes the structure of the retailers’ optimal EOC strategies for the supply
chain.

Proposition 3.1. In the three-level supply chain, the optimal EOC periods xk (k = 1, 2, . . . , n)
minimizing SC1(x) defined in Equation (7) must be in the set {0, Lw + 1, Ls + Lw + 2}.
Proof. When 0 6 xk 6 Lw + 1 for some k ∈ {1, 2, . . . , n}, the second partial derivative of SC1(x)
defined in Equation (7) with respect to xk is

∂2SC1(x)
∂x2

k

= − rwσ4
k

4(
∑

i6=k σ2
i (Lw + 1− xi)+ + Lw + 1− xk)3/2

− rkσk

4(Lk + xk + 1)3/2
< 0, (8)

which indicates that the SC1(x) is concave in xk. Thus, to minimize SC1(x) in Equation (7), xk must
be either 0 or Lw + 1.

When Lw + 1 6 xk 6 Ls + Lw + 2 for some k ∈ {1, 2, . . . , n}, it can be proved similarly that SC1(x)
is also concave with respect to xk. Therefore, to minimize SC1(x), one only needs to choose xk in
{Lw + 1, Ls + Lw + 2}.

From the above, we have that xk must be chosen from the set {0, Lw + 1, Ls + Lw + 2}, for k = 1,

2, . . . , n. 2

Define y = (y11, y12, . . . , y1n, y21, . . . , y2n, y31, . . . , y3n) such that

y1i =

{
1, xi = 0,

0, others,
y2i =

{
1, xi = Lw + 1,

0, others,
y3i =

{
1, xi = Ls + Lw + 2,

0, others.

Since each xi cannot be two values at the same time, y1i + y2i + y3i = 1 (i = 1, 2, . . . , n), Equation (7)
can be expressed as:

SC2(y) = SC1(x)

= rs

√√√√
n∑

i=1

σ2
i (Ls + 1)(1− y3i) + rw

√√√√
n∑

i=1

σ2
i (Lw + 1)y1i

+
n∑

i=1

riσiy1i

√
Li + 1 +

n∑

i=1

riσiy2i

√
Li + Lw + 2 +

n∑

i=1

riσiy3i

√
Ls + Lw + Li + 3. (9)

Replacing y3i by 1− y1i − y2i, we simplify Equation (9) to

SC2(y) = rs

√√√√
n∑

i=1

σ2
i (Ls + 1)(y1i + y2i) + rw

√√√√
n∑

i=1

σ2
i (Lw + 1)y1i

+
n∑

i=1

riσi

√
Ls + Lw + Li + 3−

n∑

i=1

riσi(
√

Lw + Li + 2−
√

Li + 1)y1i

+
n∑

i=1

riσi(
√

Ls + Lw + Li + 3−
√

Lw + Li + 2)(y1i + y2i). (10)

We then denote r2
s(Ls + 1) = b2, r2

w(Lw + 1) = b1, σ2
i = ai,

∑n
i=1 riσi

√
(Ls + Lw + Li + 3) = C,

riσi(
√

(Lw + Li + 2)−
√

(Li + 1)) = c1i, riσi(
√

(Ls + Lw + Li + 3)−
√

(Lw + Li + 2)) = c2i. Let y1i +
y2i = z2i, y1i = z1i, and then we have

SC3(z) = SC2(y) =
2∑

j=1

(
bj

n∑

i=1

aizji

)1/2

−
2∑

j=1

n∑

i=1

cjizji + C, (11)

where z = (z11, z12, . . . , z1n, z21, . . . , z2n) ∈ {0, 1}2n and z2i > z1i, for any i = 1, 2, . . . , n. Since C is a
constant, minimizing SC3(z) in Equation (11) is clearly a special case of Problem (1) with s = 1/2.
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4 Extension

In this section, we consider an extended version of Problem (1):

Min f(x) =
m∑

j=1

(
bj

n∑

i=1

aixji

)s

−
m∑

j=1

n∑

i=1

cjixji, (12)

s.t. xki > xli, for any k > l, i = 1, 2, . . . , n, xji ∈ {0, 1}, for any i and j,

where 0 < s < 1, ai > 0, bj > 0, cji > 0, and n and m are both integers. Here we assume that n is
much larger than m, and in the rest of the paper, we want to find an algorithm to solve Problem (12) in
a polynomial time of n.

In this section, we refer to x as a feasible solution if x satisfies constraints of Problem (12). For any
feasible solution x, define

S1(x) = {i | x1i = x2i = · · · = xmi = 1},
Sk(x) = {i | x1i = · · · = xk−1,i = 0, xki = · · · = xmi = 1}, k = 2, 3, . . . , m,

Sm+1(x) = {i | x1i = x2i = · · · = xmi = 0}.

Let T0(x) = ∅, Tk(x) =
⋃k

l=1 Sl(x), k = 1, 2, . . . , m + 1. Clearly, we have Tk(x) = {i | xki = 1}
(k = 1, 2, . . . , m) and Tm+1(x) = S = {1, 2, . . . , n}. Thus, Equation (12) is equivalent to

f(x) =
m∑

j=1

[(
bj

∑

i∈Tj(x)

ai

)s

−
∑

i∈Tj(x)

cji

]
=

m∑

j=1

[( ∑

i∈Tj+1(x)\Sj+1(x)

aibj

)s

−
∑

i∈Tj+1(x)\Sj+1(x)

cji

]
. (13)

Note that a feasible solution of Problem (12) can uniquely determine a set partition of S, i.e., {P1, . . . ,

Pm+1} with properties
⋃m+1

k=1 Pk = S and Pk ∩ Pl = ∅ for any k 6= l. Conversely, a set partition of S,
{P1, . . . , Pm+1}, can also uniquely determine a feasible solution of Problem (12). Therefore, to determine
the optimal solution of Problem (12), one only needs to choose {P1, . . . , Pm+1} to minimize

f̃(P1, . . . , Pm+1) =
m∑

j=1

[(
bj

∑

i∈Gj+1\Pj+1

ai

)s

−
∑

i∈Gj+1\Pj+1

cji

]
, (14)

s.t. Gj = Gj+1\Pj+1, j = 1, 2, . . . , m,Gm+1 = S,
m+1⋃

k=1

Pk = S.

Therefore, Problem (12) can be solved by a dynamic programming method. Denote

Vk(Gk) = min
P2,...,Pk

k∑

j=2

[(
bj

∑

i∈Gj\Pj

ai

)s

−
∑

i∈Gj\Pj

cji

]
, k = 2, 3, . . . , m + 1,

vk(Gk, Pk) =
(

bj

∑

i∈Gk\Pk

ai

)s

−
∑

i∈Gk\Pk

cji, k = 2, 3, . . . , m + 1.

Then the Bellman equation for this problem is



Vk(Gk) = min
Pk⊆Gk

{vk(Pk, Gk) + Vk−1(Gk−1)}, k = 2, . . . , m + 1,

V1(G1) = 0, for any G1 ⊆ S,
(15)

where the decision variables are Pk, k = 2, . . . , m + 1, and the state transformation functions are

Gk−1 = Gk\Pk, k = 2, . . . , m + 1. (16)

Proposition 4.1. Let {P ∗2 , . . . , P ∗m+1} be the solution of the Bellman equation (15) with Gm+1 = S

and V ∗
m+1(S) be the corresponding value when P2 = P ∗2 , . . . , Pm+1 = P ∗m+1. Denote P ∗1 = S\(⋃m+1

k=2 P ∗k ).
Then the optimal value of Problem (12) is V ∗

m+1(S) and the optimal solution for Problem (12) is x∗ =
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(x∗11, x
∗
12, . . . , x

∗
1n, . . . , x∗m1, x

∗
m2, . . . , x

∗
mn), where x∗1i = x∗2i = · · · = x∗mi = 1 for i ∈ P ∗1 ; x∗1i = x∗2i = · · · =

x∗k−1,i = 0, x∗ki = · · · = x∗mi = 1, for i ∈ P ∗k (k = 1, 2, . . . , m); x∗1i = x∗2i = · · · = x∗mi = 0 for i ∈ P ∗m+1.

Proof. It is obvious from the analysis above. 2

Generally, the Bellman equation (15) is not polynomial-time solvable. However, the following theorem
shows that, to find the solution of the Bellman equation (15), we only need to confine our searchings to the
feasible solutions with special structure. This will considerably decrease the computational complexity.

Define Rk,l(i), for any 1 6 k 6 l 6 m, as the ranking position of the item i in the ascending order by
(
∑l

j=k cji)/ai. By comparison with R1(i), R2(i), R3(i) defined in Section 2, we have that R1,1(i) here is
equivalent to R1(i), R2,2(i) is equivalent to R2(i), R1,2(i) is equivalent to R3(i).

Theorem 4.1. Assume Rv,w(i) (1 6 v 6 w 6 m, i = 1, 2, . . . , n) is determined. Any optimal solution
x∗ for Problem (12) satisfies that: For any 1 6 v 6 w 6 m, p ∈ Sw+1(x∗), and q ∈ Sv(x∗), we have
Rv,w(p) < Rv,w(q).

Proof. The proof of this theorem is similar to that of Theorem 2.1. 2

By Theorem 4.1 and Proposition 4.1, we have that the solution of the Bellman equation (15), {P ∗2 , . . . ,

P ∗m+1}, together with P ∗1 = S\(⋃m+1
k=2 P ∗k ), possesses the following property: For any 1 6 v 6 w 6 m,

p ∈ P ∗w+1, and q ∈ P ∗v , we have Rv,w(p) < Rv,w(q).
Suppose that {P ∗2 , . . . , P ∗m+1} is the solution of the Bellman equation (15) and P ∗1 = S\(⋃m+1

k=2 P ∗k ).
Let k∗1,m = max{R1,m(i) | i ∈ P ∗m+1} and Q1,m = {i ∈ S | R1,m(i) 6 k∗1,m}. Then we have P ∗m+1 ⊆ Q1,m

and that Q1,m ∩ P ∗1 = ∅ (This statement can be proved based on Theorem 4.1 with a similar argument
to that of Part (a) of Corollary 2.1).

Let k∗2,m = max{R2,m(i) | i ∈ P ∗m+1} and Q2,m = {i ∈ Q1,m | R2,m(i) 6 k∗2,m}. Similarly to Corol-
lary 2.1, we have P ∗m+1 ⊆ Q2,m and Q2,m ∩ P ∗2 = ∅.

Continuing this process, we can also define Qk,m, with similar properties, P ∗m+1 ⊆ Qk,m and Qk,m ∩
P ∗k = ∅, k = 1, 2, . . . , m, as above. Note that P ∗m+1 ⊆ Qm,m and Qm,m ∩ (

⋃m
k=1 P ∗k ) = ∅. Therefore,

P ∗m+1 = Qm,m.
Next, consider Gm = S\P ∗m+1 (correspondingly, consider Rk,m−1(i), k = 1, 2, . . . , m − 1, instead of

Rk,m(i), k = 1, 2, . . . , m). By a similar method, we can define Qm−1,m−1 = P ∗m. Proceeding similarly,
we can define Qm−2,m−2 = P ∗m−1, . . . , Q1,1 = P ∗2 (P ∗1 can be defined by P ∗1 = S\(⋃m+1

k=2 P ∗k )).
By the analysis above, we are able to give the algorithm to solve the Bellman equation (15) and

Problem (12). Before presenting this algorithm, we descriptively provide a function, which will be called
in this algorithm. This function runs based on given Rv,w(i), 1 6 v 6 w 6 m, i = 1, 2, . . . , n.

Function. [P1, . . . , Pk, Vk] = f̄(k, Gk).
If k = 1, then let P1 = G1 and V1 = 0.
If k > 1, then proceed as follows.
Let P1 = · · · = Pk−1 = ∅, Pk = Gk, Vk = 0.
For p1 = 1 : |Gk|

Choose Q1,k−1 = {i1, i2, . . . , ip1} ⊆ Gk such that R1,k−1(i1), R1,k−1(i2), . . . , R1,k−1(ip1) are the p1

smallest numbers in the set {R1,k−1(i) | i ∈ Gk}.
For p2 = 1 : p1

Choose Q2,k−1 = {i1, i2, . . . , ip2} ⊆ Q1,k−1 such that R2,k−1(i1), R2,k−1(i2), . . . , R2,k−1(ip2) are
the p2 smallest numbers in the set {R2,k−1(i) | i ∈ Q1,k−1}.
...
For pk−1 = 1 : pk−2

Choose Qk−1,k−1 = {i1, i2, . . . , ipk−1} ⊆ Qk−2,k−1 such that Rk−1,k−1(i1), Rk−1,k−1(i2), . . . ,
Rk−1,k−1(ipk−1) are the pk−1 smallest numbers in the set {Rk−1,k−1(i) | i ∈ Qk−2,k−1}.
Let Gk−1 = Gk\Qk−1,k−1.
Call Function f̄ and let [P̄1, . . . , P̄k−1, V̄k−1] = f̄(k − 1, Gk−1).
If V̄k−1 + (

∑
i∈Gk\Qk−1,k−1

aibk)s −∑
i∈Gk\Qk−1,k−1

cki < Vk, then let P1 = P̄1, . . . , Pk−1 =
P̄k−1, Pk = Qk−1,k−1 and Vk = V̄k−1 + (

∑
i∈Gk\Qk−1,k−1

aibk)s −∑
i∈Gk\Qk−1,k−1

cki.
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End
...

End
End

With the function above, we have the following algorithm.

Algorithm 4.1.
Step 1: Solve Rv,w(i), 1 6 v 6 w 6 m, i = 1, 2, . . . , n, by some sorting procedure.

Let P ∗1 = · · · = P ∗m = ∅, P ∗m+1 = S, V ∗
m+1 = 0.

Step 2: Call Function [P ∗1 , . . . , P ∗m+1, V
∗
m+1] = f̄(m + 1, S).

Step 3: Define x∗ = (x∗11, . . . , x
∗
1n, . . . , x∗m1, . . . , x

∗
mn), where x∗1i = · · · = x∗mi = 1 for i ∈ P ∗1 ; x∗1i = · · · =

x∗k−1,i = 0, x∗ki = · · · = x∗mi = 1, for i ∈ P ∗k (k = 1, 2, . . . , m); x∗1i = · · · = x∗m,i = 0 for i ∈ P ∗m+1.
Output x∗ as the optimal solution and V ∗

m+1 as the optimal value for Problem (12).

Theorem 4.2. Algorithm 4.1 is able to find the optimal solution of Problem (12) with a complexity of
O(n(m2+m)/2).

Proof. By Theorem 4.1 and the associated analysis presented previously, one can easily show that the
optimal solution of Problem (12) is examined in Algorithm 4.1. Therefore, Algorithm 4.1 is able to find
the optimal solution for Problem (12).

Step 1 of Algorithm 4.1 runs with a complexity of O(m2n log n) . In Step 2, assume the function
f̄(k, Gk) runs with g(k) calculations. Thus, by analysis of Function f̄ , we know that, for any given
k ∈ {1, 2, . . . , m}, f̄(k + 1, Gk+1) runs with g(k + 1) = pk−1 · pk−2 . . . p1 · |Gk|g(k) calculations. Since
pk−1 6 pk−2 6 · · · 6 p1 6 |Gk| 6 n, we have g(k + 1) 6 nkg(k). Therefore, g(m + 1) = O(nm · nm−1 ·
· · · · n) = O(n(m2+m)/2), i.e., Algorithm 4.1 runs with a complexity of O(n(m2+m)/2). 2

With the method of exhaustion, the running time for solving Problem (12) would be increasing expo-
nentially with n, which means that the method is inefficient. Theorem 4.2 indicates that Algorithm 4.1 is
an effective method for solving Problem (12) compared with the method of exhaustion, especially when
n is large. It can be shown that similar problems as in Section 3 for an m-level supply chain (m > 3) can
also be reduced to a special case of Problem (12). Thus, Algorithm 4.1 can also be applied to solving the
optimal solution for an m-level supply chain with early order commitment.
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