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ABSTRACT

Supply chain partnership involves mutual commitments among participating firms. One
example is early order commitment, wherein a retailer commits to purchase a fixed-order
quantity and delivery time from a supplier before the real need takes place. This paper
explores the value of practicing early order commitment in the supply chain. We investi-
gate the complex interactions between early order commitment and forecast errors by sim-
ulating a supply chain with one capacitated supplier and multiple retailers under demand
uncertainty. We found that practicing early order commitment can generate significant
savings in the supply chain, but the benefits are only valid within a range of order commit-
ment periods. Different components of forecast errors have different cost implications to
the supplier and the retailers. The presence of trend in the demand increases the total
supply chain cost, but makes early order commitment more appealing. The more retail-
ers sharing the same supplier, the more valuable for the supply chain to practice early
order commitment. Except in cases where little capacity cushion is available, our find-
ings are relatively consistent in the environments where cost structure, number of retail-
ers, capacity utilization, and capacity policy are varied.
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INTRODUCTION

In recent years, many industries have shifted their foci of continuous improve-
ments from internal operation efficiency to the overall efficiency of trade relation-
ships. Various industries have embarked on industry-wide initiatives that promote
information sharing and integration across the stakeholders in the supply chain.
Initiatives such as Quick Response of the U.S. apparel and textile industries and
Efficient Consumer Response of the grocery industry have yielded dramatic
improvements in the speed, efficiency, and accuracy by which goods can be man-
ufactured, distributed, and sold to the consumers (Kurt Salmon Association,
1993). The premise of these initiatives is that increased efficiencies could be
gained through co-managed business processes and shared information.

Although these recent initiatives help reduce forecast errors, a company’s
forecasting capability remains an important asset because unreliable forecasts
result in inefficiencies in the supply chain. Moreover, supply chain partnership
involves mutual commitments. One form of such commitments is early order com-
mitment. An early order commitment is a firm purchase order, fixed in both quan-
tity and delivery time, made by a retailer to the supplier earlier than a planned lead
time for manufacturing and delivery. For example, Wal-Mart and Warner-Lambert
used Listerine, a popular brand of oral cleaning liquid, to test the collaborative
forecasting concept and software. Wal-Mart agreed to extend its order cycle from
nine days to six weeks to match the manufacturing time for Listerine and share the
risks (Koloszyc, 1998).

When retailers make an order commitment early, the supplier has ample time
to prepare for the production and better utilize his resources, thus reducing produc-
tion and logistic costs. On the contrary, orders of short notice and last-minute order
changes are likely to cause inefficiency and extra costs in the supply chain. The
supplier may bear such costs in the short run, but in the long run these costs tend
to be affected by every stakeholder in the supply chain. When product demand
exceeds supply, early order commitment helps a customer to secure a portion of the
supplier’s capacity or a promise of on-time delivery. However, to a retailer, com-
mitting an order early faces a risk of over- or underforecasting the demand. The
risk can be high when demand uncertainty is high or when the quality of demand
forecast is questionable. Therefore, it would be critical to quantify and compare
these cost implications to determine if sufficient savings to the entire supply chain
can be generated to justify the efforts of practicing early order commitment. More-
over, how “early” should the order be committed and what factors may have sig-
nificant impacts on such a decision are questions of interest in this paper.

In this research we explore the benefits of practicing early order commitment
in the supply chain. We investigate the complex interactions between early order
commitment and forecast errors by simulating a supply chain with a capacitated
supplier who supplies to multiple retailers. We study the impact of forecast error on
the value of early order commitment. Three components of forecast error are ana-
lyzed, including forecast bias, forecast deviation, and the increased rate of forecast
deviation with time. Specifically, we address the following four research questions:

1. Which component of forecast error has the greatest impact on the total
system cost in a supply chain?
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2. Does early order commitment help reduce the total system cost in a supply
chain? If so, what are the benefits to the supplier and to the retailers,
respectively? How does forecast error affect the selection of early order
commitment periods?

3. Holding forecast errors at the same level, how do trends and seasonality in
demand affect the decision of early order commitment?

4. How robust are the findings that address the above three research ques-
tions under different operational settings, such as cost structure, number
of retailers, capacity utilization, and capacity adjustment policy?

Our results indicate that practicing early order commitment can generate sig-
nificant system-wide savings in the supply chain, but the benefits are only valid
within a “feasible range” of early order commitment periods. To reduce total sys-
tem cost, controlling forecast deviation is as critical as controlling forecast bias,
while the increase rate of forecast deviation is an insignificant factor. Early order
commitment is more beneficial to a supply chain when the demand contains trend,
especially a negative trend. In addition, the more retailers sharing one supplier, the
more valuable it is for the supply chain to practice early order commitment. Except
in cases where little capacity cushion is available, these findings are consistent
across the operational settings we explored.

This paper is organized as follows. The next section presents the related lit-
erature. We then describe the supply chain environment and explain the design of
the simulation experiment. The experimental results and insights to the research
questions are discussed next, followed by the summary and conclusions.

LITERATURE REVIEW

In prior research that studies the impact of forecast errors on production planning
within a manufacturing entity, a common approach is to separately control the
forecast bias and forecast deviation (variability). Lee and Adam (1986) and Lee,
Adam, and Ebert (1987) reported that while both forecast bias and standard deviation
significantly affect MRP system performance, bias had a more significant impact.
Ritzman and King (1993) analyzed the impact of forecast errors on total inventory
and past due demand in an MRP system with uncertainties in demand, supply, and
lead time. They also found that in most circumstances, forecast bias is much more
crucial to system performance than is forecast variability. Lin and Krajewski (1992)
developed an analytical model to study the impact of frozen interval and replanning
interval of master production schedules under uncertain demand. Lin, Krajewski,
Leong, and Benton (1994) tested that analytical model and found that the choice
of frozen interval has a more significant impact than the choice of the replanning
interval. They also showed that the magnitude of the forecast errors play relatively
minor roles in the choice of these intervals. Bhaskaran (1998) did a simulation
study at General Motors Corp. and found that the Kanban systems that do not gen-
erate meaningful forecasts for suppliers can cause considerable degradation of
schedule stability. She showed three typical profiles of the rate that forecast devi-
ation accelerates as the forecasts go further into the future: constant rate, decreas-
ing rate, and increasing rate.
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Academic research that studies the impact of forecast errors on the supply
chain is relatively new. Lee, Padmanabhan, and Whang (1997) analyzed the phe-
nomenon that demand variability amplifies as one moves up a supply chain. Using
a first-order autoregressive demand (AR(1)), they mathematically proved that the
demand variation was amplified when orders were passed to the supplier. This
phenomenon is called the bullwhip effect. They analyzed four causes of the bull-
whip effect as demand forecasting processing, rationing game, order batching, and
price variations. Improved information sharing and market channel alignment are
major remedies among others. Metters (1997) studied the impact of induced
demand seasonality and increased forecast error caused by the bullwhip effect. His
results indicate that eliminating the induced seasonality alone can increase the
overall profitability of the system (i.e., supply chain) by 10-20%, while decreasing
the forecast error alone can increase profitability by 5-10%. However, his experi-
ment treated the supply chain as a system and did not distinguish the number of
stages in the supply chain, nor the number of retailers or suppliers in each stage.
Baganha and Cohen (1998) developed an analytical model to demonstrate that
inventories can sometimes have a stabilizing effect on the supply chain and that
bullwhip effect is not always present throughout the supply chain.

Chen, Drezner, Ryan, and Simchi-Levi (2000) quantified the bullwhip effect
for a simple, two-stage supply chain consisting of a single retailer and a single
manufacturer. They assumed that the retailer’s demand followed an AR(1) process
and used a simple order-up-to inventory policy to make inventory replenishment
decisions. They also assumed that the retailer used the simple moving average
model to forecast the demand. They demonstrated that the magnitude of the vari-
ance was significantly influenced by the number of observations used in the mov-
ing average, the lead time between the retailer and the manufacturer, and the
correlation parameter in the demand function. In particular, when the number of
observations used in the simple moving average is large, the increase in order vari-
ability is negligible. However, when that number is small, there can be a signifi-
cant increase in variability. In other words, the smoother the demand forecasts, the
smaller the increase in variability. They also found that the bullwhip effect could
be reduced, but not completely eliminated, by sharing retailer demand among all
parties in the supply chain.

In another paper, Chen, Ryan, and Simchi-Levi (2000) investigated the
impact of simple exponential smoothing forecasts on the bullwhip effect. They
found that for i.i.d. demands, or demands with a linear trend, exponential smooth-
ing forecasts lead to a larger increase in order variability than moving average fore-
casts. A retailer forecasting a demand with a linear trend will have more variable
orders than a retailer forecasting a demand without trend. These two papers by
Chen et al. evaluated the magnitude of the variance amplifications in the supply
chain by considering alternative demand processes and forecasting models. How-
ever, they did not consider the impact of the variance amplifications on the cost
and service level of the supply chain. Furthermore, their studies were based on a
supply chain with a single supplier and a single retailer, and did not consider fac-
tors such as inventory cost, ordering cost, production setup cost, and production
decisions by the manufacturer.
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Gilbert and Ballou (1999) proposed a model to quantify the benefits to the
supplier from obtaining advanced commitments from downstream customers. In
deriving the model, they assumed that the demand of the supplier followed a Pois-
son process and the processing times are exponentially distributed. Their model
provides some price discount bounds for a supplier to use advanced order commit-
ments as a means of offering lower purchasing prices to his customers. But, their
model does not address the costs of the customers nor the impact of forecasting
accuracy as the customers place orders in advance.

As Gilbert and Ballou (1999) indicated, little research has addressed the ben-
efits that accrue to a supply chain when downstream firms are given incentives to
provide earlier commitment to purchases. They also realized that only by under-
standing the cost implications of advanced order commitment can a firm offer
price incentives benefiting both itself and its customers. In addition, most studies
in the supply chain literature made many assumptions to simplify the environment
in an attempt to build tractable analytical models. Common assumptions in the lit-
erature include no cost for placing an order, the use of an (s, S) inventory control
and ordering policy by the retailers, and infinite supply from the supplier with no
batching in production. While these analytical models help researchers and practi-
tioners develop insights to the innovative approaches of supply chain integration,
they do not necessarily provide enough guidance for practicing managers to imple-
ment the proposed approaches. In this study, we develop a simulation model that
captures a rich set of cost items and demand patterns in order to explore the bene-
fits of practicing early order commitment for all the members in a supply chain.
With a simulation model, we not only can examine the impact of forecast error on
a retailer’s decision of committing orders earlier, but we also conduct experiments
on a variety of environments by changing cost structure, number of retailers, level
of capacity utilization, and capacity adjustment policy. 

THE SUPPLY CHAIN ENVIRONMENT

Background and Basic Assumptions

We develop the base case experiment to investigate the first three research ques-
tions. We then perform various sensitivity analysis experiments to address the
fourth research question. To establish a realistic environment for our experiments,
we visited a soft drink bottling plant and discussed the parameter designs of the
supply chain in the experiments with the company’s supply chain manager. In the
base case the supply chain consists of one supplier (the bottling plant) and four
retailers (supermarkets that sell this soft drink). The cost parameters used in the
base case are either real data from the company or estimates that we derived after
we consulted the manager. The supplier is a manufacturer with a capacitated facil-
ity that produces a single product for the retailers. No explicit manufacturing lead-
time will be considered because the conclusions will not change as long as the lead
time is fixed. However, the production lead time as a result of insufficient capacity
is implicitly determined in the supplier’s production decision. Only the retailers
face customer demand, and the average demand per period for each retailer is
1,000 cases. The retailers replenish their inventories from the supplier by placing



6 Impact of Forecast Errors

orders to him. Therefore, the average demand per period for the supplier is 4,000
cases. The number of periods that the retailers place orders in advance, called early
order commitment, is to be examined in the simulation experiment.

The shipments of products are delivered from the supplier to the retailers by
trucks, and the transportation lead time from the supplier to each retailer is one
period. The truckload is assumed to be large enough (or equivalently, the product
is small enough in size and weight) so that a shipment to each retailer in each
period can be completed by a single truck. The estimated transportation cost per
truck from the supplier to a retailer is based on the distance. Whenever a retailer
places an order to the supplier, a fixed-order processing cost of $30 per order is
incurred. Because only one truck is needed for one order delivery, the actual order-
ing cost for a retailer is the sum of the single truck transportation cost and the
fixed-order processing cost. The production setup cost of the supplier is estimated
to be around $500 per setup. This includes the opportunity cost for the production
setup time and the material cost for setting up the production run. The inventory
carrying costs per unit per period (h) for the supplier and the retailers are also esti-
mated based on the soft drink company’s accounting records and on the supply
chain manager’s estimates. These costs include the rental and operation of ware-
house space and the opportunity cost of the capital. The annual inventory costs for
both the supplier and retailers are estimated to be about 18% of the item value in
the base case. Since the cost per case is $30 for the supplier and $40 for the retail-
ers, the daily inventory carrying costs are 0.18*30/365=$0.015/case*day and
0.36*40/365= $0.02/case*day, respectively. We also estimate the unit backorder
cost per day. It is estimated to be at 1% of the product value per day for the base
case. We use three other combinations of backorder cost and carrying cost in the
first sensitivity analysis experiment that will be explained in detail later. Table 1
summarizes these cost structures.

The length of the simulation run is selected in such a way that the termination
effect will be minimized (430 periods in this study). The first 50 periods and the
last 30 periods are excluded from the performance measures calculations to elim-
inate the effects of the transportation and ordering lead times. Therefore, the final
performance measures are calculated based on 350 simulation periods (from
period 50 to period 399). Furthermore, in order to avoid possible backorder for the
retailers during the first few periods immediately following the 49th period
because of transportation lead time, sufficient initial inventory is assumed for each
retailer. In this study, we set the initial inventory in the 49th period for the ith
retailer at (14 + i)*1000 (i = 1, 2, 3, 4). The second part of the initial inventory
(i*1000 units) is used to make different retailers have different initial inventories.
The simulation procedure consists of three phases, to be discussed below.

Phase I: Generation of the Demand and the Capacity

The first phase of the simulation generates demands for all the retailers and the
available aggregate capacity for the single resource of the supplier. Demand for
each retailer is generated by a corresponding demand generator using the follow-
ing formula:
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(1)

where

Demandt = demand in period t (t = 0, 1, 2, ..., 429),

snormal() = standard normal random number generator, and

SeasonCycle = 7 in this study.

The other parameters (base, slope, season, noise) are characteristic parameters for
the demand generators, among which base is selected to ensure that the average
demand for the 350 simulation periods (from the 50th period to 399th period) is
1,000. Because there is a normal variant in the demand generation function, the
demand generated may take a negative value. We consider this possibility negligible
and will impose the restriction that the standard normal random number generator

Table 1: Cost structures for the supplier and four retailers.

Supplier/Retailer Supplier
Retailer

1
Retailer

2
Retailer

3
Retailer 

4

Case 1 (Base Experiment): Low Inventory Carrying cost and Low Backorder Cost

Order Processing Cost ($/order)
(Transportation Cost Excluded)

500
(Setup cost)

30 30 30 30

Transportation Cost ($/truck) N/A 450 255 331 553

Carrying Cost ($/unit/period) 0.015 0.02 0.02 0.02 0.02

Backorder Cost ($/unit/period) 0.30 0.40 0.40 0.40 0.40

Case 2: Low Inventory Carrying cost and High Backorder Cost

Order Processing Cost ($/order)
(Transportation Cost Excluded)

500
(Setup cost)

30 30 30 30

Transportation Cost ($/truck) N/A 450 255 331 553

Carrying Cost ($/unit/period) 0.015 0.02 0.02 0.02 0.02

Backorder Cost ($/unit/period) 1.50 2.0 2.0 2.0 2.0

Case 3: High Inventory Carrying cost and Low Backorder Cost

Order Processing Cost ($/order)
(Transportation Cost Excluded)

500
(Setup cost)

30 30 30 30

Transportation Cost ($/truck) N/A 450 255 331 553

Carrying Cost ($/unit/period) 0.03 0.04 0.04 0.04 0.04

Backorder Cost ($/unit/period) 0.30 0.40 0.40 0.40 0.40

Case 4: High Inventory Carrying Cost and High Backorder Cost

Order Processing Cost ($/order)
(Transportation Cost Excluded)

500
(Setup cost)

30 30 30 30

Transportation Cost ($/truck) N/A 450 255 331 553

Carrying Cost ($/unit/period) 0.03 0.04 0.04 0.04 0.04

Backorder Cost ($/unit/period) 1.50 2.0 2.0 2.0 2.0

Demandt base slope t season

sin
2π

SeasonCycle
---------------------------------- t×

 
  noise snormal  ( )×+×

+×

,

+=
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only produces the random number from –3.0 to +3.0; thus, no negative value will be
possible for the demands. The season cycle of seven days is used to represent a
weekly variation in sales faced by many retailers. These demand generators given in
equation (1) were used in Zhao and Lee (1993).

We assume in this study that all retailers face an identical demand pattern in
a given time, although the exact amount of demand varies among the retailers due
to randomness. Three demand generators are used: SEA is the pattern with season-
alities but without trends, SIT has seasonalities and a positive trend, while SDT has
seasonalities and a negative trend. The demand patterns and their characteristic
parameters are listed in Table 2.

In this study, we assume that the capacity requirement for each unit of prod-
uct equals one, as was the case in almost all the models we reviewed in the litera-
ture. That is, one unit of resource is required by the supplier to produce exactly one
unit of product. This assumption will not change the generality of the conclusion
because the demand for a product can always be measured by the units of the
resource needed to produce that product. Once the demands for all retailers are
generated for the 430 periods, the total capacity needed to produce all the items can
be calculated, for the total capacity needed equals the total demand of all retailers
over all the periods. In the base case, the available capacity is assumed to be at a
constant level during the entire simulation horizon so that the overall capacity uti-
lization is 80%. In the sensitivity analyses, we test two other levels of capacity uti-
lization at 70% and 90%. We also explore a policy of allowing the capacity to be
adjusted from period to period.

Phase II: Retailers’ Ordering Decisions

For a retailer the planning horizon of the purchasing plan is 32 periods, which is
eight times the natural ordering cycle, and the re-planning periodicity equals one
period. Based on demand forecasts, a retailer decides when and how many units to
order from the supplier by using the economic order quantity (EOQ) policy. The
retailer must place the order to the supplier (OC + 1) periods in advance, where OC
is the level of early order commitment and the one period is the transportation lead
time. Once the order is placed, it is considered “frozen” and cannot be changed.
Since the replanning interval is fixed at one period, in each planning cycle a retailer
needs to calculate the net requirements for the remaining (32 – OC) “free” periods.
If the EOQ formula indicates that an order for the first free period is needed, this
order will be placed (and committed) to the supplier. All the future orders in the rest
of the free intervals are not placed and can be updated in the next planning cycle.
For example, when OC = 5, the retailer must place an order six periods in advance
based on forecasts, whereas the supplier must deliver the product five periods later,
and this delivery will arrive at the retailer one additional period later due to the
transportation lead time. Then, at the end of the period, the actual customer demand
is realized. The retailer fills the customer’s order (plus backorder if there is any) by
on-hand inventory, and any shortages will become backorders.

Phase III: Supplier’s Production and Delivery Decision

The supplier is assumed to be a manufacturer that, in planning its production activi-
ties, applies a single-item capacitated lot-sizing rule as developed by Chung and Lin
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(1988). This efficient algorithm can find the optimal solution in polynomial time.
The supplier receives orders from four different retailers and makes production-
planning decisions based on the available information. At the end of each period,
and after the current period’s production is finished, the supplier makes shipping
decisions from on-hand inventory. The supplier fills each retailer’s order (plus
backorder if there is any) if on-hand inventory is sufficient to fill all retailers’
orders and backorders. If on-hand inventory is insufficient, each retailer will be
allocated by a quota proportional to its order (plus backorder if there is any), and
any shortages will become backorders. The shipment will arrive at the retailers via
trucks after the transportation lead time. As we have pointed out above, we assume
the truckload is large enough so that a single truck can complete a shipment to any
retailer in any period.

The party to whom the transportation cost will be charged depends on
whether there is a placed order from the retailer corresponding to the shipment.
When the retailer places an order in the current period, the retailer picks up the bill
for the transportation cost of the current period’s shipment, regardless of whether
a proportion of the shipment is used to satisfy the backorder of previous orders.
When the retailer does not place an order in the current period, the shipment to the
retailer is only used to satisfy the backorders of previous orders. In this case, the
supplier picks up the bill for the transportation cost of the current period’s ship-
ment.

This process is repeated until ordering, production, and delivery decisions
are developed for all 430 periods. After the entire simulation run is completed, all
the cost items will be calculated for the retailers and the supplier. The aggregate
total cost will also be calculated and used as the performance measure for the sup-
ply chain. As pointed out in previous paragraphs, all performance measures are
calculated based on the data from the 50th period to the 399th period.

EXPERIMENTAL DESIGN

Experimental Factors for the Base Case

The experimental factors used in the base case include demand pattern (DP), early
order commitment periods (OC), and forecasting error distribution parameters.
The parameters of the demand patterns are given in Table 2. We selected the fol-
lowing values as the OC periods: (0,5,10,15,20). The forecasting errors are
assumed to be normally distributed and are characterized by three parameters: the
mean (also called bias) of forecast errors (EB), the initial standard deviation (ED)
that measures forecast variability, and the increase rate (IR) of forecast deviation
along time. We set EB at (–5%, 0, 5%, and 10%) and ED at (0, 5%, and 20%) for

Table 2: Demand patterns.

Demand Generator Base Slope Season Noise

SEA 1,000.0 0 200 100

SIT 551.0 2 200 100

SDT 1,449.0 –2 200 100



10 Impact of Forecast Errors

the demand described in equation (1). Adopting the idea from Bhaskaran (1998)
that was discussed in the literature review section, we selected three patterns of
increase rate (IR) for forecast deviation: linear, concave, and convex. However, in
the initial experiments we performed, the results across three patterns of IR were
of little difference. Therefore, we dropped IR from the experimental factors, and
then used the linear increasing rate (1/4.85) throughout the experiment. Hence, the
demand forecast made at period t0 for a period t  is generated according to
the following formula:

, (2)

where

Demandt is the demand in period t (t = 0, 1, 2, ..., 429) as given in equation (1) and
snormal() is a standard normal random number generator. The experimental fac-
tors and their values used in the base case are summarized in Table 3. Because of
the way we define EB in equation (2), a positive EB represents overforecasting the
demand, while a negative EB stands for underforecasting the demand.

Experimental Factors for Sensitivity Analyses

Realizing that some other factors may influence the results of the base case, we
conducted four sensitivity analyses by varying the cost structure (CS), the capacity
tightness (CT), the number of retailers (NR), and the capacity changing policy
(CP). For the cost structure, we varied the inventory carrying cost and the back-
order costs because there are often subjective components in their estimation,
especially the backorder cost. As discussed above, we estimated the inventory car-
rying cost to be 18% per year and the backorder cost to be 1% of the item value per
day. These costs can be significantly higher for other companies in the soft drink
industry. Therefore, we increased these costs in the sensitivity analyses. In Case 2,
we increased the backorder cost to 5% of the item value while keeping the inven-
tory carrying cost the same. In Case 3, we increased the inventory carrying cost to
36% per year while keeping the backorder cost the same as in the base experiment.
In Case 4, we increased both the inventory carrying cost and backorder costs.
These cost figures are summarized in Table 1.

To examine the impact of the ratio between the number of retailers and sup-
pliers, the number of retailers is varied from one (NR = 1) to eight (NR = 8) in the
second sensitivity analysis. The capacity tightness (CT) is varied from a capacity
utilization rate of 70% (CT = Low) to that of 90% (CT = High) in the third sensi-
tivity analysis. Thus, CT = Low has the most capacity cushion when needed.
Moreover, in the base case experiment, we assume that the capacity remains at a
fixed level and cannot be adjusted during the entire simulation horizon
(CP = constant). In the fourth sensitivity analysis, we perform simulation experi-
ments with the assumption that the capacity can be adjusted period by period based
on the demand (CP = changing).The parameters setting used in the sensitivity
analyses are summarized in Table 4.

t t0≥( )

Forecastt Demandt 1 EB ED
                      1 t t0–( ) 4.85⁄+[ ] snormal()××

+ +{
}

×=
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Performance Measures

The following performance measures are used in the experiments:

1. Total cost for retailers (TCR), which is the grand sum of the ordering costs
(including transportation costs), inventory carrying costs, and backorder
costs among all the retailers.

2. Total cost for the supplier (TCS), which is the sum of the setup cost, trans-
portation cost (for backorder deliveries), inventory carrying cost, and
backorder cost for the supplier (BCS).

3. Total cost for the entire supply chain (TC), which is the sum of the TCR and
TCS, but deducts the backorder cost paid from the supplier to the retailers
(BCS). We subtract BCS from the total cost because it is not a real cost if the
retailers do not charge the supplier when they run out of stock.

RESULTS AND ANALYSIS

The Base Case

For each combination of the experimental factors, five replications were conducted
in the simulation to reduce the random effects. The output from the base case sim-
ulation experiments was analyzed using the SAS analysis of variance (ANOVA)
procedure and the Duncan’s test. The results are presented in Tables 5 and 6. The
residual analyses from SAS suggested that transformations of the performance
measures were necessary to meet the assumptions of normality independence, and
equal variances of the errors that ANOVA requires. We discuss the data analysis and
the results in the sequence of the four research questions that this paper ,addresses.

Table 3: Summary of the experimental factors for the base case.

Variable 
Number

Variable 
Name Label

Number of 
Levels Values

1 Retailer’s Demand Patterns DP 3 SEA, SIT, SDT

2 Forecast Bias EB 4 –5, 0, 5, 10 (%)

3 Forecast Deviation ED 3 0, 5, 20 (%)

4 Order Commitment Period OC 5 0, 5, 10, 15, 20 (periods)

Table 4: Parameters varied in the sensitivity analyses.

Sensitivity 
Analyses 

Parameters
Varied Label

Number of 
Levels Values

1 Cost Structure* CS 4 Case1 (Base), Case2, Case3, Case 4

2 Number of Retailers NR 3 1:1; 1:4 (Base); 1:8 

3 Capacity Tightness CT 3 Low: 70% utilization; Med: 80% utili-
zation (Base);  High: 90% utilization 

4 Capacity Policy CP 2 Constant (Base); Changing

*See the detailed cost parameters for these cases in Table 1.
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Table 5: Selected ANOVA results.

Factors TC(1) TCS(2) TCR(3)

Source R-square F-Value Pr > F R-square F-Value Pr > F R-square F-Value Pr > F

DP .0337 1094.26   <.0001* .0261 572.76 <.0001* .0270 1125.56 <.0001*

EB .0230 497.38 <.0001* .0004 6.50 <.0002 .0527 1467.14 <.0001*

ED .0468 1518.11 <.0001* .0058 127.30 <.0001* .0680 2839.56 <.0001*

OC .7833 12699.90 <.0001* .9342 10250.30 <.0001* .6479 13519.90 <.0001*

DP*EB .0002 2.25 <.0372 .0004 2.80 0.0106 .0004 6.23 <.0001*

DP*ED .0008 12.40 <.0001* .0033 35.97 <.0001* .0001 1.36 .2477

DP*OC .0682 553.24 <.0001* .0062 33.79 <.0001* .1420 1481.57 <.0001*

EB*ED .0013 14.32 <.0001* .0001 0.62 .7173 .0036 50.11 <.0001*

EB*OC .0125 67.71 <.0001* .0006 2.14 .0128 .0204 141.94 <.0001*

ED*OC .0160 129.33 <.0001* .0016 8.81 <.0001* .0262 273.54 <.0001*

DP*EB*ED .0002 1.28 .2238 .0003 0.97 .4778 .0001 0.99 .4604

DP*EB*OC .0010 2.73 <.0001* .0012 2.13 .0014 .0007 2.55 <.0001*

DP*ED*OC .0002 0.74 .7519 .0021 5.79 <.0001* .0004 1.98 .0121

EB*ED*OC .0009 2.34 .0003 .0003 0.55 .9620 .0012 4.31 <.0001*

(1)Based on residual analysis and suggestion by SAS, inverse square-root transformations of TC (i.e. 1/sqrt(TC)) was made to satisfy the assumptions of
ANOVA. 

(2)Based on residual analysis and suggestion by SAS, logarithm transformations of TCS (i.e., log10(TCS)) was made to satisfy the assumptions of ANOVA.
(3) Based on residual analysis and suggestion by SAS, square-root transformations of TCR (i.e., sqrt(TCR)) was made to satisfy the assumptions of ANOVA.
*Significant at .0001 level
Labels: DP-demand pattern, EB-forecast bias, ED-forecast deviation, OC-early order commitment period, TC-total supply chain cost, TCS-total cost for
the supplier, TCR-total cost for the retailers.
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Impact of the components of forecast error

The first research question examines which component of forecast error has the
greatest impact on TC. In an earlier section, we stated that the pattern of increasing
rate for forecast deviation was not a significant factor and had been dropped from
further analysis. The ANOVA in Table 5 shows that both forecast bias (EB) and
forecast deviation (ED) are significant in all three cost measures. However, ED has
larger F-values than EB. This may be attributed to a large maximum value of ED
(20%) used in the experiment.

Figure 1 provides the plot of TC curves on various combinations of ED and
EB. Figure 1 shows that TC is the lowest when ED = 0 and EB = 0. The more these
forecast error components deviate from zero, the higher the TC. The Duncan’s
groupings in Table 6 show that TCR, TCS, and TC all increase as ED increases
from 0 to 20%. The impact of ED on the TCS is relatively smaller than that on the
TCR and TC. These results indicate that a higher variability in the demand forecast
(ED) does increase the costs of the supplier, the retailers and, hence, the entire sup-
ply chain. However, the detrimental effect of EB is not as straightforward. Among
the four levels of EB, EB = 0 has the lowest TC and TCR, but not TCS.

As for TCR, negative and positive forecast biases (EB) have different impli-
cations. The plot of TCR curves shows a similar pattern as seen in Figure 1 and,

Table 6: Duncan’s grouping on main effects.

Dependent Variables TC TCS TCR

Source RANK RANK RANK

DP SEA 1 1 2

SIT 2 2~3 1

SDT 3 2~3 3

EB –5 2 1 2

0 1 2~4 1

5 3 2~4 3

10 4 2~4 4

ED 0 1 1~2 1

5 2 1~2 2

20 3 3 3

OC 0 5 5 1

5 1 4 2

10 2 3 3

15 3 1 4

20 4 2 5

*The Duncan’s groupings were performed at the .05 significant level based on the trans-
formed values as described in the footnote of Table 4.

**Labels: DP = demand pattern, EB = forecast bias, ED = forecast deviation, OC = early
order commitment period, TC = total supply chain cost, TCS = total cost for the supplier,
TCR = total cost for the retailers.
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hence, is not provided here. When EB is –5%, the retailers constantly underesti-
mate the demand and incur a high level of shortage cost and backorder cost. As EB
increases and gets closer to zero, the backorder cost at the retailers decreases sig-
nificantly. As EB becomes positive and continues to increase, the retailers gradu-
ally overestimate the demand, so the inventory carrying cost becomes the
dominant cost component while backorder cost diminishes. Thus, TCR and TC
continue to increase as EB increases from 0 to 10%.

The plot of TCS, as given in Figure 2, shows a quite different pattern from
that in Figure 1. TCS is the lowest when EB = –5% and increases as EB gets larger.
However, the increasing rate is steeper for ED = 20% than those for ED = 0 or 5%.
A negative EB means that the retailers’ forecasts consistently underestimate the
demand and that the supplier does not get as many orders as he should. Therefore,
the supplier can satisfy the retailers’ orders and, thus, has a lower backorder cost
and TCS. As EB becomes larger than zero, the retailers overestimate the demand
and place more and more orders to the supplier. Such increased ordering to the sup-
plier pushes TCS higher.

Impact of order commitment period on cost performance

The second research question concerns the relationship between the early order com-
mitment period and cost performance. The ANOVA analysis in Table 5 indicates that
OC is the most significant experimental factor. The interactions of both OC*EB and
OC*ED are significant as well. Figures 3 and 4 provide the TC plots on various peri-
ods of early order commitment, categorized by EB and ED, respectively. Figure 3
shows that the roughly U-shaped TC plots drop significantly as OC increases from
0 to 5 periods, and then gradually increase as OC becomes larger. The increasing
rate of TC depends on the level of EB, where EB = 0 has the slowest increase, while

Figure 1: Interaction of forecast bias (EB) and forecast deviation (ED) on total
supply chain cost (TC).
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EB = 10% has the fastest. Table 7 provides the breakdown of three cost performance
measures and the internal backorder cost of the supplier (BCS), classified by OC and
EB. Recall that BCS is one component in TCS. Both TC and TCS values show a dra-
matic drop as OC moves from 0 to 5. However, across all levels of EB, the decline
of TCS values is especially large and is attributed to the change of the proportion of
BCS within TCS. As OC increases from 0 to 5, the proportion of BCS drops from
around 50% to 13% (see BCS/TCS ratios in Table 7). That proportion then decreases
gradually as OC increases. TCS values continue to decline as OC increases from 5
to 15, but at a much slower rate. As OC reaches 20, TCS increases slightly, and the
differences of TCS across different EB levels are marginal. On the other hand, in
Table 7 the TCR values are consistently going up as OC increases from 0 to 20, with
EB = 10% having the fastest increasing rate and EB = 0 the lowest increasing rate.

Such a difference in cost implication to the supplier and the retailers is the
consequence of changes of different cost components. Earlier order commitment
made by the retailers allows the supplier to optimize his production decision over
a longer planning horizon and better utilize his production capacity. When OC is
smaller, the increase in OC has a dramatic impact on the improvement of capacity
utilization. As OC increases further, the effect on the improvement of capacity uti-
lization shows diminishing return. For the retailers, however, there are two oppo-
site effects of committing orders earlier. First, a larger OC period helps the supplier
improve his capacity utilization, resulting in better services to the retailers. The
improved service level helps reduce backorder costs incurred at the retailers and,
hence, leads to better performance of the retailers. Second, as OC becomes larger,
the retailers will have to make their demand forecasts further into the future and,
hence, forecasting accuracy deteriorates. As a result, the orders placed to the sup-
plier become less reliable and cause higher backorder costs and inventory carrying
costs to the retailers. Overall, the results show that the second effect dominates the
first. This is why the TCR values always increase as OC increases.  

Figure 2: Interaction of forecast bias (EB) and forecast deviation (ED) on total
cost for the supplier (TCS).
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Figure 3: Interaction of early order commitment period (OC) and forecast bias
(EB) on total supply chain cost (TC).

Figure 4: Interaction of early order commitment period (OC) and forecast devia-
tion (ED) on total supply chain cost (TC).
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Table 7: Cost performances classified by forecast bias (EB) and early order
commitment period (OC).

EB = –5% EB = 0 EB = 5% EB = 10%

TC
OC = 0 .5751 .5742 .5696 .5663 

OC = 5 .3767 .3785 .3871 .3936 

OC = 10 .3795 .3756 .3891 .4033 

OC = 15 .3949 .3836 .4030 .4260 

OC = 20 .4469 .4252 .4470 .4785 

TCS
OC = 0 .8053 .8209 .8206 .8291 

OC = 5 .2184 .2221 .2251 .2175 

OC = 10 .2007 .2019 .2034 .1992 

OC = 15 .1879 .1894 .1967 .1990 

OC = 20 .1888 .1979 .1999 .2093 

TCR
OC = 0 .1668 .1655 .1660 .1663 

OC = 5 .1856 .1865 .1940 .2039 

OC = 10 .1974 .1933 .2054 .2214 

OC = 15 .2178 .2050 .2219 .2434 

OC = 20 .2689 .2436 .2631 .2913 

Internal backorder cost BCS = TCR + TCS – TC
OC = 0 .3970 .4121 .4170 .4291 

OC = 5 .0273 .0301 .0320 .0278 

OC = 10 .0186 .0195 .0196 .0172 

OC = 15 .0108 .0108 .0156 .0164 

OC = 20 .0108 .0163 .0160 .0221 

BCS/TCS ratio
OC = 0 49% 50% 51% 52%

OC = 5 12% 14% 14% 13%

OC = 10 9% 10% 10% 9%

OC = 15 6% 6% 8% 8%

OC = 20 6% 8% 8% 11%

Labels: TC = total supply chain cost, TCS = total cost for the supplier, TCR = total cost for
the retailers, BCS = backorder cost for the supplier
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Figure 4 provides the profile of the OC*ED interaction on TC. These TC
plots are strikingly similar to the TC curves observed in Figure 3. Not only are the
shapes similar, but the values of TC at different OC periods in these two figures are
close. A cost component analysis of Figure 4 also indicates a very similar pattern
to what was discovered for Figure 3. Comparing across three levels of ED in Fig-
ure 4, ED = 20% produces the highest TC, while ED = 0 produces the lowest. The
TC values drop sharply as OC increases from 0 to 5, then increases gradually after-
wards. The proportion of BCS/TCS drops from around 50% to around 14% as OC
moves from 0 to 5 periods.

From the above observations about OC, we conclude that in the base case
experiment early order commitment is beneficial to the entire supply chain and to
the supplier, but at the expense of the retailers. Moreover, the benefits are espe-
cially significant as compared to the situation when no early order commitment is
made (OC = 0). The savings could be enormous to the supplier and to the supply
chain as a whole. However, we also note that the benefits only last for a “feasible”
range of OC periods. After the great reduction in the initial stage, TC flattens
quickly before it continues to increase as OC is increased further. The greater the
forecast errors, whether in terms of EB or ED, the shorter the feasible range of OC
periods.

Impact of demand pattern

Our third research question centers on whether demand trends and seasonality
affect early order commitment. The Duncan’s groupings in Table 6 show that
among the three demand patterns, SEA (seasonality without trend) has the lowest
TC, while SDT (seasonality with a negative trend) has the highest TC. The perfor-
mance ranking of the three demand patterns can be explained by the assumption
that the supplier has a constant capacity over time.

In the case of SDT, the demand decreases over time. In the earlier periods of
the simulation horizon, demand is higher than capacity so that backorders occur.
These backorders are carried over to later periods. The demand decreases as time
goes on, so there is excess capacity available towards the end of the simulation
horizon. The backorders that happened at the beginning of the simulation can now
be filled by the excess capacity. Because of the cumulative nature of the backor-
ders, high backorder costs are incurred early and last over a long period of time.
Thus, the total cost for SDT is higher.

In the case of SIT, the demand increases over time. Therefore, the demand is
lower than the capacity in the earlier periods and, thus, the back orders are lower
initially. As time advances, demand becomes higher than the available capacity
towards the end of the simulation horizon and, hence, significant backorder costs
occur in the later periods. However, there is less accumulation of backorders from
earlier periods, so the backorder cost is actually lower for SIT than for SDT.

When the demand is SEA, there is only seasonal variation but not trend. The
seasonal variation tends to average out within the cycle periods (14 periods in this
case). Therefore, the fixed capacity can accommodate the demand variation much
better than when trends are present. The backorder costs and, hence, the total sys-
tem costs, are lower than those in the cases of SIT and SDT.
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Figure 5 presents the TC plots of three demand patterns (DP) across various
levels of forecast bias (EB). It shows that EB = 0 results in the lowest level of total
system cost regardless of the demand patterns. When EB increases in either the
positive or the negative directions, TC increases. The plots also indicate that the
TC gaps among the demand patterns are relatively uniform across various levels of
EB, hence, the interaction of DP*OC is insignificant. Therefore, either positive or
negative forecast bias will increase the total system cost regardless of the demand
patterns faced by the retailers. The plots of TC on DP*ED interaction look similar
to those in Figure 5 (and hence is not included). The larger the ED value, the higher
the TC.

To examine the impact of demand pattern on the benefits of early order com-
mitment, we plot the OC*DP interaction on TC in Figure 6. The TC curves of the
three demand patterns all follow the similar shape as shown in Figures 3 and 4 ear-
lier. As OC first increases from 0 to 5 periods, TC decreases dramatically under all
three demand patterns. As OC is increased from 5 periods to 10 periods, TC does
not show dramatic increase for any of the three demand patterns. When OC is
increased further, TC increases very quickly for DP = SDT. The effect is less dra-
matic with DP = SEA, while the increase is very slight with DP = SIT. Such a dif-
ference in the cost change is caused by the capacity imbalances between supply
and demand under different demand patterns. When OC increases, there are two
opposite effects on the performance of the system. First, as the early order com-
mitment increases, the forecasting accuracy of the retailers deteriorates and, thus,
leads to a higher inventory carrying cost and backorder cost for the retailers. The
second effect is that the orders placed earlier will help the supplier make better
capacity utilization decisions and, thus, reduce the backorder cost for the suppliers.
For the SIT demand, the demand increases over time. While there is excess capac-
ity in the early periods, there are more capacity shortages towards the later periods
of the simulation horizon. A longer earlier order commitment period helps the sup-
plier to schedule more production when there is excess capacity and, thus, helps to
reduce backorders in later periods. This is why a longer earlier order commitment
period is more beneficial to the SIT demand.

On the contrary, the SDT demand exceeds capacity in the early periods, but
significant capacity shortage and backorders accumulate during the simulation
horizon. Committing orders early does not help much in improving capacity utili-
zation and, hence, the first effect becomes dominant. This is why the total cost
increases dramatically when OC exceeds 10 periods. For the SEA demand, the
imbalance between capacity and demand is not as serious because there is no trend
in the demand. The increase in OC does not lead to much improvement in capacity
utilization, either. Therefore, TC also increases as OC is increased from 10 to 20
periods. Overall, the results in Figure 6 show that significant cost savings can be
achieved for the entire supply chain through early order commitment, and the best
OC period seems to be between 5 and 10 periods.

Four Sensitivity Analyses

After the base case experiment was completed, we performed a series of sensitivity
analysis experiments to explore whether the findings of the base case still apply in
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different environments where the operational parameters are changed. We tested
four additional factors, one at a time, in the following sequence: cost structure,
number of retailers, capacity tightness, and capacity adjustment policy. In each
analysis, the experiment repeated the simulation with the same factors and param-
eter settings used in the base case, except for modifying the new factor of interest.

Cost structure

Though there are many cost components in the performance measure of the TC, we
focus on changing two cost items: backorder cost and inventory carrying cost.
These two cost items not only affect both the supplier and the retailers, they are
also the most dominant cost components in the simulation. We use two levels for
each cost item: a 1:5 ratio (denoting Low and High) on backorder cost and a 1:2
ratio (Low and High) on carrying cost. Because the assessment of backorder cost
tends to be more subjective and harder to do than that of inventory carrying cost,
we give it a higher ratio to reflect a larger range of variation. Therefore, we test
four combinations (cases) of these two costs. As summarized in Table 1, Case 1 is
the base case featuring Low backorder costs and Low carrying costs. In Case 2,
both the backorder costs for the supplier and for the retailers are raised to five
times higher than those in the base case, while the carrying costs remain
unchanged. On the other hand, the carrying costs for the supplier and the retailers
are doubled in Case 3, but the backorder costs stay the same as in the base case.
Finally, Case 4 uses both the High backorder costs and the High carrying costs. We
discussed the values of these cost parameters with the supply chain manager of the
soft drink company, and he believed that these parameters are within a reasonable
range. The annual carrying cost for the High carrying cost cases is equivalent to
36% of the item value. The backorder cost per period is equivalent to 5% of the
item value per day backordered in the cases with High backorder cost.

Figure 5: Total cost performance of forecast bias (EB) under different demand
patterns (DP).
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The experimental results from Case 2 show two unique characteristics. First,
we found that the TC values at EB = –5% increased drastically after OC exceeds
five periods. As shown in Figure 7, the TC plots still follow the U-shape similar to
the ones in Figure 3. Because of higher backorder costs, the TC values are all
higher than those observed in Figure 3. However, the TC curve associated with
EB = –5% has the highest values across all OC periods and shows the steepest cost
increase. A further analysis shows that the cost increase at EB = –5% is primarily
due to an increase in TCR. As discussed earlier, when EB = –5% the retailers con-
stantly underestimate the demand and incur a high level of shortage and backorder
cost. Now that the retailer backorder cost is five times higher, naturally, the TCR
goes up drastically.

Second, we found a strong interaction between demand pattern (DP) and OC
period. As plotted in Figure 8, the TC curves are similar to those observed in Fig-
ure 6, yet quite different in the scale. Though the plots are still U-shaped in Figure
8, the vertical scale shows a much larger upper limit (at 1.1 instead of 0.65 as in
Figure 6). The TC curve associated with DP = SDT (negative trend) has a very
steep cost increase from OC = 15 to OC = 20 that now dwarfs the TC values at
OC = 0. This TC curve is similar to its counterpart in Figure 6 but with a much
larger increase of TC. For the TC curves of the other two demand patterns, the
costs increase uniformly across all the OC periods with much smaller rates. A
detailed data analysis indicates that the TC value at OC = 20 under SDT increases
by 94% in comparison to the one in the base case (i.e. on Figure 6). Likewise, the
average TCR increases by 151% and average TCS by 61%, respectively. Appar-
ently, a five-time higher backorder cost exacerbates the increase of TCR and,
hence, the shape of the TC curve for SDT at OC = 20.

Except for the above two unique characteristics above, the remaining results
from Case 2 show very similar patterns to those found in the base case. Further-
more, we found no significant differences between the findings of Case 3 (High

Figure 6: Total cost performance of early order commitment (OC) under differ-
ent demand patterns (DP).
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carrying cost but Low backorder cost) and those in the base case. On the other
hand, the results of Case 4 (High carrying cost and High backorder cost) give pat-
terns that are a hybrid between those found in Case 2 and in the base case. From
these analyses, we conclude that the cost structure does not significantly influence
the general conclusions that we made in the base case concerning the impact of
early order commitment on the performance of supply chains.

Number of retailers

The second sensitivity analysis was to test the impact of the number of retailers.
While the base case used four retailers and a common supplier, here we test two
other values of retailers: one and eight. To ensure a fair comparison, we maintain
the aggregate demand for all retailers at 4,000 units (1,000 units per retailer * 4
retailers) regardless of the number of retailers used. In the instance of one retailer
(NR = 1), we used the average of the four sets of the cost parameters adopted by
the four retailers in the base case. When there are 8 retailers (NR = 8), we simply
duplicated the four retailers used in the base case.

While most of the results of this sensitivity analysis are very similar to those
found in the base case, we note that the number of retailers does significantly influ-
ence the cost savings that can be achieved by early order commitment. Figures 9
and 10 show the total supply chain costs under different combinations of early order
commitment (OC) and expected bias (EB) for one and eight retailers, respectively.
When the results in Figures 3, 9 and 10 are compared, we can see that when there
is only one retailer, the total cost is much lower than that in the base case (NR = 4).
When there are eight retailers (NR=8), the total cost is much higher than that in the
base case. These cost changes are understandable because fewer retailers incur

Figure 7: Interaction of early order commitment period (OC) and forecast bias
(EB) on total supply chain cost (TC) when backorder costs are five times higher.
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lower transportation costs and setup costs, while the carrying costs and backorder
costs are less likely to be affected by the number of retailers.

When the cost savings as a result of early order commitment are compared,
we can see that the number of retailers significantly influences the cost savings as
a result of early order commitments. As the number of retailers increases, the max-
imum amount of cost savings (i.e., the gap in TC between OC = 0 and OC = 10)
that can be achieved through early order commitments increases considerably.
Furthermore, the “feasible range” of OC also increases as the number of retailers
increase. When more retailers are committing orders earlier, it allows the supplier
to “pool” the demands together to reduce the lumpiness of the workload and
smooth production.

Capacity tightness

In the base case, the available capacity is set at a constant (Medium) level during
the simulation horizon so that the average demand is 80% of the capacity level,
equivalent to an 80% capacity utilization. In the third sensitivity analysis, we
tested two other levels of capacity utilization—70% (Low) and 90% (High)—by
adjusting the capacity level. A lower capacity utilization gives the supplier more
cushion to smooth his workload and, hence, reduce backorders. As expected, when
capacity utilization is lower, the supplier has much lower TCS due to fewer back-
orders, whereas the retailer costs (TCR) remain about the same level. Therefore,
overall TC values are about 10% lower when the capacity utilization is Low than
when it is Medium. The results and TC plots for the Low capacity utilization case
are very similar to the findings reported about the base case. We do find that the TC
values are still the highest for the demand pattern with negative trend (SDT), but
the TC values are very close between SEA and SIT. This indicates that when the
supplier has a larger capacity cushion, the supply chain can better cope with a
demand that is increasing over time (positive trend).

Figure 8: Total cost performance of early order commitment (OC) under differ-
ent demand patterns (DP) when backorder costs are five times higher.
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Figure 9: Interaction of early order commitment period (OC) and forecast bias
(EB) on total supply chain cost (TC) with only one retailer (NR = 1).

Figure 10: Interaction of early order commitment period (OC) and forecast bias
(EB) on total supply chain cost (TC) with eight retailers (NR = 8).
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On the other hand, when capacity is tight (Utilization =90%) the TC curves
are quite different from those reported earlier in the base case. In Figure 11, the TC
curves are plotted against different OC and EB, as in Figure 3 of the base case. The
TC plot shows that the costs continuously decline (rather than U-shaped as in Fig-
ure 3), but the decline rate is slower as OC increases. Compared to their counter-
parts in Figure 3, the TC values at OC = 15 and 20 in Figure 11 are about twice as
high, while the TC values at OC = 0, 5, and 10 are about three times higher. Fol-
lowing the notion of the feasible range from Figure 3, here we see the feasible
range of OC is as long as 20 periods. These observations suggest that when capac-
ity is tight a longer OC would be more helpful in reducing the total system cost. In
addition, Figure 11 also shows that the TC values drop consistently as EB
increases from –5% to 10%. Compared with Figure 3, where EB = 0 has the lowest
TC, EB = 0 in Figure 11 has the second highest TC. The reason for this is that the
retailers underestimate the demand when EB = –5%, thus, they face a severe pen-
alty of backorder costs as the supplier cannot produce enough supplies in time due
to a tight capacity. On the other hand, the larger the EB value, the higher will be the
level of overestimating demand. When the supplier’s capacity is tight, the retail-
ers’ overstocks reduce the need for ordering from the supplier. The plots of TC on
OC*ED for the case of tight capacity show a similar pattern as seen in Figure 11.
The plots regarding demand patterns are also similar to the ones observed in the
base case.

Capacity policy

In the fourth sensitivity analysis we simulate an environment that is more flexible.
Rather than being set at a constant level throughout the simulation horizon as in the
base case, we allowed capacity to be adjusted based on the demand generated at
each period. To ensure a fair comparison with the base case, we still maintained the
capacity utilization at 80%. Note that although the utilization rates are the same,
the base case represents an average capacity utilization, while the sensitivity anal-
ysis here shows an adjustable capacity that is always 20% higher than the demand
of that period. Overall, the TCR values do not change much from the base case, but
the TCS values drop 15%, and the TC values drop 3%. All the observations about
EB, ED, and OC are very similar to the base case. The only notable difference has
to do with the impact of demand pattern. In Figure 12, we plot the TC curves across
three demand patterns and four EB values. Compared with Figure 5, its counter-
part of the base case, Figure 12 shows a similar pattern in which EB=0 still has the
lowest TC and EB=10% the highest. However, while SDT demand still has the
highest TC, the lowest TC curve is with SIT demand in Figure 12. In contrast, the
lowest TC was with SEA demand in Figure 5.

Upon close examination of the component costs under different demand pat-
terns, we found that the total cost under SIT demand is the lowest mainly because
of lower ordering costs incurred by the retailers (OCR) and by the supplier (OCS)
under SIT. The scenario is caused by the effect of the initial inventory. Under SIT,
the demand at the beginning simulation periods is lower. Thus, the initial inventory
can usually cover demands for more periods, and fewer orders are placed during
the earlier periods. When the demand is higher in later periods of the simulation,
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Figure 11: Interaction of early order commitment period (OC) and forecast bias
(EB) on total supply chain cost (TC) when capacity is tight (Utilization = 90%).

Figure 12: Total cost performance of forecast bias (EB) under different demand
patterns (DP) when capacity is adjustable.
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more orders are placed. The net result is that the ordering frequency is the lowest
under SIT demand and, hence, the lowest ordering cost. When the supplier’s
capacity can be adjusted, the backorder costs for both the supplier and retailers are
low, and the OCR and OCS are the dominating components in the TC. Therefore,
the total supply chain cost under SIT is lower than that under SEA when the capac-
ity can be adjusted. When the capacity is fixed, however, backorder cost becomes
the dominating cost component. Since there are significantly higher backorder
costs under SIT than under SEA, total cost under SIT is higher when capacity is
fixed. This is what we observed in the base case.

SUMMARY AND CONCLUSIONS 

This research studies the value of practicing early order commitment in a supply
chain setting. It also investigates the impact of forecasting errors on the selection
of early order commitment periods. After visiting a soft drink bottling plant and
consulting its managers, we developed a computer simulation to study a two-stage
supply chain with one capacitated supplier who supplies the same product to mul-
tiple retailers. We designed a base case experiment to address three core research
questions surrounding the value of early order commitment, the impact of forecast
error, and the impact of demand pattern. We then examined the robustness of the
findings of the base case via four sensitivity analyses by changing cost structure,
number of retailers, capacity utilization, and capacity adjustment policy. Our
experiments led to the following main findings and managerial implications:

1. To improve the total system cost of the supply chain, both forecast bias
(EB) and forecast deviation (ED) are important factors to control, whereas
the increase rate of forecast deviation over time is an insignificant factor.
A larger forecast deviation would worsen the cost performances of both
the supplier and the retailers. On the other hand, the impact of forecast
bias has different cost implications to the supplier and the retailers. A neg-
ative forecast bias causes underestimation of the demand and, hence, high
backorders for the retailers, while the supplier’s cost remains low.

2. Early order commitment from the retailers to the supplier can reduce total
system cost in the supply chain, but the benefits are only valid within a
feasible range of order commitment (OC) periods. Greater benefits tend to
occur when the OC value is small, then the savings diminish quickly as
OC increases. In addition, the larger the forecast error, whether in the
form of bias or deviation, the shorter the feasible range of OC. Therefore,
when demand uncertainty is high or when a retailer’s forecasting capabil-
ity is questionable, the retailer should not make an order commitment too
early (but it is still worthwhile to do for a short period).

3. The benefits of early order commitment are different for the supply chain
members involved. To a supplier, the longer the order commitment peri-
ods, the easier to plan for production and, hence, the more cost savings
can be gained. For the retailers and the whole supply chain, judicious use
of early order commitment is required. Such a finding suggests that for the
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well-being of the entire supply chain it may be worthwhile for the retailers
to take a “sacrifice.” The sacrifice can be either losing a certain degree of
flexibility of “waiting until the last minute to place an order” or bearing a
slightly increased cost. The savings of adopting earlier order commitment
are more easily attained when the supplier and retailers are owned by the
same corporation or are engaged in some gain-sharing programs.

4. The presence of trend in the demand increases the total system cost in a
supply chain. A negative trend causes a higher total system cost than does
a positive trend. Adopting a short OC period would greatly reduce total
supply chain cost regardless of the demand pattern. However, a longer OC
period is beneficial to the cost performance under the demand with a pos-
itive trend but is detrimental when the demand has a negative trend.

5. Though the change of cost structure does not alter the patterns of the cost
performances in general, it certainly affects the selection of OC periods
for some occasions. We found that higher unit backorder costs had a
greater impact on the findings than higher unit inventory carrying costs.
High backorder costs exacerbate the situations in which a retailer under-
estimates the demand but commits orders early. These situations tend to
happen when there is a negative forecast bias or there is a negative trend
in the demand.

6. Given the same aggregate demand, the more retailers sharing one sup-
plier, the more valuable for the supply chain to practice early order com-
mitment.

7. On the other hand, the findings of the base case are robust when the capac-
ity cushion of the common supplier is raised. Likewise, the findings are
not much different from those of the base case when capacity can be
adjusted periodically. On the other hand, when the capacity cushion is
reduced, the value of committing orders earlier increases, and the feasible
range of OC becomes wider than that in the base case. Moreover, when
capacity is tight, a larger positive forecast bias tends to help reduce costs
due to overestimating the demand.

In conclusion, these findings suggest that early order commitment can be a
fruitful avenue for enhancing supply chain coordination and reducing total system
inefficiency. They also shed light on the complex interactions between early order
commitment and forecast errors. Given the fact that little research has been done to
address the use of early order commitment, the findings of this research may pro-
vide helpful guidelines for managers who are seeking new opportunities for supply
chain integration.

Clearly, these findings are only valid for the environmental settings in which
we conducted the study and the data we tested in the experiment. There are several
areas for future research: First, the structure of the supply chain can be expanded
to more tiers rather than just one tier as studied in this paper. Second, in this study
we assumed that the supplier uses a particular capacitated lot-sizing rule to make
his production decision and the retailers use EOQ to make their inventory deci-
sions. Changing the ordering and production rules may lead to new findings.
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Third, we only focused on various types of costs in the supply chain. It would be
interesting to extend the research to include pricing discounts and other forms of
incentives to entice retailers to commit orders earlier. Finally, empirical research
that examines the practice of early order commitment in a supply chain setting is
in great need. [Received: January 10, 2000. Accepted: March 1, 2002].
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