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harm the revenues of the airlines. Numerical examples demonstrate that
whether the two airlines offer callable products and whether offering callable
products is beneficial to the two airlines mainly depend on their loads and
capacities. Specifically, when the difference between the loads of the airlines
is large, the loads of the airlines play the most important role. When the
difference between the loads of the airlines is small, the capacities of the air-
lines play the most important role. Moreover, numerical examples show that
the booking limits of the two airlines in the case with callable products are
always higher than those in the case without callable products.
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1. Introduction

During the last three decades, the technology of revenue management has
been used more and more widely around the world, and has played a signif-
icant role in improving the profits of corporations. As a result, this field
has attracted much attention from scholars (e.g., Steinhardt and Gönsch,
2012; Hu et al., 2013; Otero and Akhavan-Tabatabaei, 2015). In the air-
line industry in which the technology of revenue management is most widely
used, airlines usually have to face two types of customers: low-valuation cus-
tomers who accept low-fare tickets only but are willing to book in advance
and high-valuation customers who are willing to buy expensive tickets but
arrive just before the plane takes off. Usually, the airlines cannot forecast
the demand from high-valuation customers with certainty or convince them
to book earlier than the low-valuation customers. Thus, “despite heavy in-
vestment in sophisticated revenue management systems, airlines lose millions
of dollars a year in potential revenue; both when low-fare bookings displace
higher than expected high-fare bookings (‘cannibalization’) and when air-
lines fly empty seats protected for high-fare bookings that do not materialize
(‘spoilage’)” (Gallego et al., 2008). Many kinds of mechanisms are proposed
to hedge against demand uncertainty from high-valuation customers, e.g.,
overbooking (Karaesmen and Van Ryzin, 2004; Aydın et al., 2012), last-
minute discounts (Ovchinnikov and Milner, 2012), flexible products (Gallego
and Phillips, 2004) etc. All these mechanisms have shortcomings: overbook-
ing adds operational complexity to management; last-minute discounts may
induce the customers to wait rather than to book early; flexible products
require that the customers are indifferent among the alternative flights. To
avoid the above shortcomings, Gallego et al. (2008) proposed the concept
of “callable products”, which refers to units of capacity sold to self-selected
low-fare customers who willingly grant the airline the option to “call” the
capacity at a pre-specified recall price. The concept of callable products
does not add operational complexity and can be used together with other
mechanisms.

Gallego et al. (2008) showed that callable products provide a riskless
source of additional revenue for a monopolistic airline. In practice, airlines
usually have to face other competitors. Seat allocation among different fare
classes by one airline affects the demand and the optimal seat allocation of
other airlines. Therefore, there are several questions to be addressed. In
a competitive environment, does offering callable products still provide a
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riskless source of additional revenues? How does the introduction of callable
products affect the capacity allocation decisions of the airlines? What is the
order relationship between the booking limits under competition and those
under monopoly? This paper aims to answer these questions.

This paper studies the capacity allocation game between duopolistic air-
lines which could offer callable products. We examine how the introduction
of callable products affects the booking limits and the revenues of duopolistic
airlines. It is shown that when the low-fare customers do not spill, offering
callable products is a dominant strategy of both airlines and provides Pareto
gains to both (In this paper, the word “spill” means that if either type of
customer cannot be satisfied by one airline, the customers go to the other
airline and can be recaptured by the other airline). When customers of both
fare classes spill, offering callable products is no longer a dominant strategy
and may harm the revenues of the airlines. Numerical examples demonstrate
that whether the two airlines offer callable products and whether offering
callable products is beneficial to the two airlines mainly depend on the loads
and the capacities of them (the load of an airline is the ratio of the average
total demand of the airline to the capacity of the airline). Specifically, when
the difference between the loads of the airlines is large, the loads of the air-
lines play the most important role. When the difference between the loads
of the airlines is small, the capacities of the airlines play the most important
role. Moreover, numerical examples demonstrate that the booking limits of
the two airlines in the case with callable products are always higher than
those in the case without callable products.

The rest of the paper is organized as follows. Section 2 reviews the lit-
erature on callable products and on revenue management game. Section 3
describes the key elements of the model. Section 4 presents a comprehensive
model analysis. Specifically, subsection 4.1 gives sufficient conditions for the
existence and uniqueness of the Nash equilibrium; subsection 4.2 examines
the impact of callable products on the revenues of the airlines when there is no
low-fare spill; subsection 4.3 compares the booking limits under competition
with those under monopoly; subsection 4.4 conducts a sensitivity analysis of
the booking limits with respect to the price parameters. In Section 5, we
run numerical examples to examine the impact of offering callable products
on the revenues and the booking limits of the two airlines, where both the
low-fare and high-fare customers spill. Section 6 concludes the paper and
points out directions for future research.
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2. Literature Review

Two streams of literature are related to our study: one is callable prod-
ucts, and the other is revenue management game.

Many forms of callable products have been used in various industries.
Some companies use an option named “callback” to recall previously com-
mitted advertisement time by paying a predetermined amount. The callable
concept is also used by Caterpillar to reduce the inventory risk of its dealers
(Sheffi, 2005, pp.229–231). Biyalogorsky et al. (1999) showed that the use
of overselling with opportunistic cancellations can increase expected profits
in an airline context. Biyalogorsky and Gerstner (2004) demonstrated that
contingent pricing can be used for sellers in response to demand uncertainty.
In contingent pricing arrangements, price is contingent on whether the seller
succeeds in obtaining a higher price within a specified period. It is shown
that contingent pricing is profitable regardless of buyers’ risk attitudes, and
that contingent pricing benefits buyers as well as sellers. Gallego et al. (2008)
differed from and extended Biyalogorsky and Gerstner (2004) in the following
ways. First, Biyalogorsky and Gerstner (2004) considered sales of a single
unit of capacity and Gallego et al. (2008) extended the analysis to sales of
multiple units. Second, Biyalogorsky and Gerstner (2004) assumed common
willingness-to-pay among buyers, whereas Gallego et al. (2008) assumed that
demand for callable products is uncertain and depends on the recall price.
Gallego et al. (2008) showed that callable products provide a riskless source
of additional revenue to a monopolistic airline. Biyalogorsky (2009) consid-
ered a model with strategic consumers who can decide when to show up in
the market and investigated whether, in the face of strategic behavior by
consumers, it can be profitable for sellers to use contingent pricing to in-
duce the low-high arrival pattern typical in the airline industry. Elmaghraby
et al. (2009) examined a situation in which the firm offers both callable and
non-callable units at different prices at any point in time. They showed that
strategic customer behavior can render the customer to be worse off and the
retailer to be better off. Therefore, more purchasing options do not neces-
sarily benefit customers. Aydın et al. (2016) developed single-leg revenue
management models that consider contingent commitment decisions, where
commitment option allows passengers to reserve a seat for a fixed duration
before making a final purchase decision. We introduce the concept of callable
products into a capacity allocation game between two airlines and examine
its impact on the revenues and the booking limits of the two airlines.
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The second stream of literature related to our study is revenue man-
agement game. Lederer and Nambimadom (1998) discussed how the entire
airline network determines the routes and frequencies of flights when multi-
ple airlines interact with each other. Using data on U.S. airline departure
times from 1975, when fares were regulated, and 1986, when fares were not
regulated, Borenstein and Netz (1999) empirically estimated the effect of
competition on product differentiation. Richard (2003) analysed the welfare
consequences of airline mergers in terms of ticket price and flight frequency.
The above research considers the competition between price, flight frequency
and departure time, which is different from seat allocation competition as
considered in this paper.

Netessine and Shumsky (2005) was the first published paper that places
the seat allocation problem in a competitive framework and examines the
seat inventory control problem. The analytical results demonstrated that
more seats are protected for high-fare passengers under horizontal competi-
tion than when a single airline acts as a monopoly. Li et al. (2007) showed
the existence of an equilibrium booking strategy such that both airlines pro-
tect the same number of seats for the high fare and that the total number of
seats available for the low fare under competition is smaller than the total
number of seats that would be available if the two airlines were to collude. Li
et al. (2008) extended Li et al. (2007) by incorporating the cost asymmetry
of different airlines. While Netessine and Shumsky (2005) took the differen-
tiation approach by assuming separate demand for each fare class offered by
an airline, Li et al. (2007) and Li et al. (2008) chose the homogeneous market
approach, i.e., two airlines face common market demand and the demand is
split between the two airlines. The splitting rules of the demand in Li et al.
(2007) and Li et al. (2008) are analogous to Rule 3 (Incremental Random
Splitting) in Lippman and McCardle (1997) and generate demand that is
independent or perfectly correlated, whereas the demand form in Netessine
and Shumsky (2005) is more general as demand of different fare classes and
different airlines can be partially correlated. We incorporate the concept of
callable products into the framework of Netessine and Shumsky (2005) and
examine its impact on the revenues and the booking limits of the two airlines.

Furthermore, Song and Parlar (2012) also studied the capacity allocation
game between two airlines, where the demand form is similar to that in
Netessine and Shumsky (2005). Song and Parlar (2012) took into account
the penalty cost for each reservation of the transfer customers rejected by
an airline. They used a nonnested model to approximate the original nested
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booking limit model and showed the existence of a unique Nash equilibrium in
the noncooperative situation. Zhao and Atkins (2002) made a major attempt
to address the joint pricing and allocation problem when two airlines compete
for passengers in one demand class. Lim et al. (2009) examined the practice
of overselling in a duopoly context where late-arriving consumers value the
good higher than early-arriving ones but the former’s arrival is uncertain.

There are some papers studying the airline alliances, including capacity
control of the airlines, revenue sharing of the airlines etc. (e.g., Graf and
Kimms, 2011; Kimms and Çetiner, 2012; Hu et al., 2013; Graf and Kimms,
2013). Particularly, Kimms and Grauberger (2016) investigated the problem
of two airlines in which they cooperate within an alliance on one hand, but
on the other hand they continue to compete for customers within a revenue
management setting. It is the first paper to consider simultaneous horizontal
and vertical competition within alliances on a network with multiple classes.

3. Problem Description

Our model is similar to that of Netessine and Shumsky (2005) and the
difference is that the airlines in our model could offer callable products. Sup-
pose there are two airlines offering flights between the same origin and the
same destination. Use subscripts i = 1, 2 to distinguish the two airlines. Both
airlines face two types of customers: low-fare customers and high-fare cus-
tomers. The low-fare customers accept low-fare tickets only but are willing to
book in advance; the high-valuation customers are willing to buy expensive
tickets but arrive just before the plane takes off. Therefore, we can assume
that the low-fare customers arrive in the first period and the high-fare cus-
tomers arrive in the second period. Suppose that the capacity of Airline i is
Ci, and that the prices of the low-fare tickets and high-fare tickets of Airline
i are pLi and pHi, respectively. The initial low-fare demand and the initial
high-fare demand of Airline i are represented by the random variables DLi

and DHi, respectively. Assume that the support sets of DLi and DHi are
nonnegative and that the cumulative distribution functions of DLi and DHi

are differentiable. If either type of customer cannot be satisfied by one air-
line, they spill to the other airline and can be recaptured by the other airline.
We call these spilled customers.

The low-fare tickets are either callable products or noncallable products:
if an airline offers callable products, the low-fare tickets are callable prod-
ucts, which means that the low-fare tickets can be recalled at a pre-specified
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price; if an airline does not offer callable products, the low-fare tickets are
noncallable products, which means that the low-fare tickets are regular tick-
ets and cannot be recalled. If an airline offers callable products, when the
capacity available for the high-fare customers could not satisfy their demand,
the airline can recall some or all of the callable tickets (i.e., low-fare tickets).
Suppose the recall price of Airline i is pi (pLi < pi < pHi). Denote the book-
ing limit of Airline i as Bi. Each airline needs to determine the booking limit
for the low-fare customers at the beginning of the first period.

Unless particularly specified, we analyse the case where both airlines offer
callable products. The expected revenue of Airline i is:

πi = E
{
pLimin(DT

Li, Bi) + pHi min
(
DT

Hi, Ci −min(DT
Li, Bi)

)
+(pHi − pi)min

(
(min(DT

Li, Bi) +DT
Hi − Ci)

+,min(DT
Li, Bi)

)}
,

(1)

where DT
Li = DLi + (DLj − Bj)

+ is the total low-fare demand for Airline i
and DT

Hi = DHi + (DHj − Cj)
+ is the total high-fare demand for Airline i

(i, j = 1, 2 and i ̸= j). The meanings of the three items in Equation (1) are
as follows: the first item is the revenue from selling the low-fare tickets, the
second item is the revenue from selling the rest of the tickets to the high-fare
customers and the third item is the additional revenue brought by recalling
some low-fare tickets. The marginal revenue of one unit of callable product
is pHi − pi.

Similar to Netessine and Shumsky (2005), we apply the method described
in Rudi (2001, pp.27–31) to obtain the derivative of Airline i’s expected
revenue:

∂πi

∂Bi

= pLiPr(DT
Li > Bi)− pHiPr(DT

Li > Bi, D
T
Hi > Ci −Bi)

+ (pHi − pi)Pr(DT
Li > Bi, D

T
Hi > Ci −Bi)

= Pr(DT
Li > Bi)

(
pLi − piPr(DT

Hi > Ci −Bi|DT
Li > Bi)

)
.

(2)

For ease of exposition, Table 1 summarizes the notation we used, where
i = 1, 2.

Note that the booking limit Bi is the only decision of Airline i. The
prices pLi, pHi and pi are not decision variables and they are assumed to be
determined somehow in advance. We consider the effects of different prices
with numerical studies in Section 5. It is obvious that, for Airline i to ob-
tain higher profit, it should be better to determine the prices pLi, pHi and pi
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Notation Meaning
Ci capacity of Airline i
pHi price of the high-fare tickets of Airline i
pLi price of the low-fare tickets of Airline i
pi recall price of Airline i
DHi initial high-fare demand of Airline i
DLi initial low-fare demand of Airline i
DT

Hi total high-fare demand of Airline i
DT

Li total low-fare demand of Airline i
Bi booking limit of Airline i
πi expected revenue of Airline i

Table 1: Notation Description

and the booking limit Bi simultaneously. However, due to the complexity of
computation and analysis, this problem is rarely considered in the compet-
itive revenue management situation (Zhao and Atkins, 2002). Furthermore,
the decisions of pricing and booking limit are at different decision levels in
reality, as stated by Petrick et al. (2010), “Revenue management is essen-
tially achieved by the application of two instruments: In a first step, on a
rather tactical planning level, price differentiation is performed, leading to
a variety of differently priced products defined on the same set of resources.
In a second step, on the operational level, the availability of the products is
permanently adjusted by means of capacity control, according to the current
forecast regarding future demand within the selling horizon”. In addition,
the focus of the paper is on examining the impact of callable products on the
revenues and the booking limits of the airlines. Therefore, we assume that
the prices pLi, pHi and pi are exogenously given.

4. Model Analysis

This section provides a comprehensive model analysis. Subsection 4.1
presents the conditions under which a unique Nash equilibrium exists. Sub-
section 4.2 examines the impact of callable products on the revenues of the
airlines when there is no low-fare spill. Subsection 4.3 compares the booking
limits under competition with those under monopoly. Subsection 4.4 con-
ducts a sensitivity analysis to investigate the impact of price parameters,
i.e., ticket prices and recall prices, on the booking limits. Note that only
Subsection 4.2 considers the situation where there is no spill of low-fare cus-
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tomers while Subsections 4.1, 4.3 and 4.4 all consider the situation where
both low-fare and high-fare customers spill.

4.1. Nash Equilibrium Conditions

This subsection presents the sufficient conditions for the existence and
uniqueness of a pure-strategy Nash equilibrium. We utilize two properties:
totally positive of order 2 (TP2) and multivariate totally positive of order 2
(MTP2) (for a thorough discussion of TP2 and MTP2, see Joe, 1997).

Definition 1. (Joe, 1997, p.23) A non-negative function b on A2, where
A ⊂ R, is TP2 if for all x1 < y1, x2 < y2, with x1, x2, y1, y2 ∈ A,

b(x1, x2)b(y1, y2) ≥ b(x1, y2)b(y1, x2). (3)

Definition 2. (Joe, 1997, p.24) Random variables X and Y are TP2 if the
joint probability density function of X and Y is TP2.

Definition 3. (Joe, 1997, p.24) Let X be a random m-vector with density
f . X of f is multivariate totally positive of order 2 (MTP2) if

f(x ∨ y)f(x ∧ y) ≥ f(x)f(y), (4)

for all x, y ∈ Rm, where

x ∨ y = (max{x1, y1},max{x2, y2}, ...,max{xm, ym}),
x ∧ y = (min{x1, y1},min{x2, y2}, ...,min{xm, ym}).

(5)

The definition of TP2 indicates that it is more possible for the realizations
of the two random variables to be both low or both high, than to be mixed
low and high. Many useful bivariate distributions are TP2, such as any set of
independent random variables, Gamma and F distributions, the multivariate
logistic and the bivariate normal distributions with positive correlation (Kalin
and Rinotta, 1980; Netessine and Shumsky, 2005). The TP2 property can be
extended to the MTP2.

Lemma 1. (Theorem 2.1 in Vives, 2001) Consider a game with n (n ≥ 2)
players. If the strategy sets are nonempty convex and compact subsets of
Euclidean space and the payoff to firm i is continuous in the actions of all
firms and quasiconcave in its own action, there is a Nash equilibrium.
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Proposition 1. When both airlines offer callable products, if DLi and DT
Hi

(i = 1, 2) are TP2, there exists a unique pure-strategy Nash equilibrium.
Furthermore, the best response functions of the airlines are decreasing.

Proposition 1 demonstrates that the best response functions are decreas-
ing, i.e., if one airline increases the booking limit, the other airline will de-
crease the booking limit, which is the same as that in Netessine and Shumsky
(2005). Recall that in Netessine and Shumsky (2005) the Nash equilibrium
exists but may not be unique. When the low-fare tickets of the airlines are
callable, Proposition 1 indicates that the Nash equilibrium is unique, which
facilitates the subsequent analysis. Note that Proposition 1 requires DLi and
DT

Hi to be TP2 while the realization ofDT
Hi depends on the realizations ofDHi

and DHj. Corollary 1 describes conditions on the four underlying demand
distributions.

Corollary 1. When both airlines offer callable products, if (DL1, DL2, DH1,
DH2) are MTP2 in their density functions, the results in Proposition 1 hold.

In the previous analysis, we assume that, if the low-fare tickets are callable,
all the low-fare customers grant the airlines the call option. If only a fraction
of the low-fare customers grant the airlines the call option, Proposition 2
gives conditions under which a pure-strategy Nash equilibrium exists.

Proposition 2. Suppose only α (0 ≤ α ≤ 1) proportion of the low-fare
customers grant the airlines the call option when the low-fare tickets are
callable. If DLi and DT

Hi (i = 1, 2) are TP2 or (DL1, DL2, DH1, DH2) are
MTP2, a pure-strategy Nash equilibrium exists. In addition, the best-response
functions of the airlines are decreasing.

For mathematical tractability, in the following analysis, we still discuss
the case where all the low-fare customers grant the airlines the call option if
the low-fare tickets are callable. In this situation, the uniqueness of the Nash
Equilibrium (Proposition 1) facilitates the analysis. If only a fraction of the
low-fare customers grant the airlines the call option, we conjecture that the
insights of the current paper still hold.

4.2. Impact of Callable Products on the Revenues of the Airlines

In this subsection, we consider the case where the low-fare customers do
not spill to the other airline while the high-fare customers do spill. This
applies to the situation where low-fare demand is so high that the booking
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limits of the two airlines can always be reached, and therefore low-fare spill
is irrelevant (Netessine and Shumsky, 2005). The case where both the low-
fare customers and the high-fare customers spill is examined numerically in
Section 5.

To investigate the impact of callable products on the revenues of the
airlines, we consider three other scenarios: neither of the two airlines offers
callable products; only Airline i (i = 1, 2) offers callable products.

1) If neither of the two airlines offers callable products, the expected
revenue of Airline i is:

πi = E
[
pLi min(DLi, Bi) + pHi min

(
D̃T

Hi, Ci −min(DLi, Bi)
)]

, (6)

where D̃T
Hi = DHi + (DHj − Cj +min(DLj, Bj))

+ is the total high-fare de-
mand for Airline i (i, j = 1, 2 and i ̸= j). The first order condition for the
maximization of (6) is:

∂πi

∂Bi

= pLiPr(DLi > Bi)− pHiPr(DLi > Bi, D̃
T
Hi > Ci −Bi)

= Pr(DLi > Bi)
(
pLi − pHiPr(D̃T

Hi > Ci −Bi|DLi > Bi)
)

= 0.

(7)

That is,

Pr(D̃T
Hi > Ci −Bi|DLi > Bi) =

pLi
pHi

. (8)

2) If only Airline i offers callable products, the expected revenues of Air-
line i and j are

πi = E
[
pLimin(DLi, Bi) + pHi min(D̃T

Hi, Ci −min(DLi, Bi))

+(pHi − pi)min((min(DLi, Bi) + D̃T
Hi − Ci)

+,min(DLi, Bi))
]
,

(9)

and

πj = E
[
pLj min(DLj, Bj) + pHj min(DT

Hj, Cj −min(DLj, Bj))
]
, (10)
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respectively. The first order conditions for the maximization of (9) and (10)
are:

∂πi

∂Bi

= pLiPr(DLi > Bi)− piPr(DLi > Bi, D̃
T
Hi > Ci −Bi)

= Pr(DLi > Bi)
(
pLi − piPr(D̃T

Hi > Ci −Bi|DLi > Bi)
)

= 0,

(11)

and

∂πj

∂Bj

= pLjPr(DLj > Bj)− pHjPr(DLj > Bj, D
T
Hj > Cj −Bj)

= Pr(DLj > Bj)
(
pLj − pHjPr(DT

Hj > Cj −Bj|DLj > Bj)
)

= 0,

(12)

respectively. Equations (11) and (12) can be simplified as:

Pr(D̃T
Hi > Ci −Bi|DLi > Bi) =

pLi
pi

, (13)

and
Pr(DT

Hj > Cj −Bj|DLj > Bj) =
pLj
pHj

. (14)

When DLi and DT
Hi are TP2, applying a similar analysis as the proof of

Proposition 1, it can be shown that there is a unique Nash equilibrium for
each game corresponding to the above three scenarios. Let πk1k2

i (k1, k2 =
0, 1, i = 1, 2) denote the revenue of Airline i in different scenarios. The
superscripts k1 and k2 indicate whether the low-fare tickets of the two airlines
are callable: 1 is callable while 0 is not. For example, π10

1 denotes the revenue
of Airline 1 when the low-fare tickets of Airline 1 are callable while those of
Airline 2 are not. Similarly, Bk1k2

i is the booking limit of Airline i in different
scenarios.

Recall that Gallego et al. (2008) showed that offering callable products
brings a riskless revenue improvement to a monopolistic airline, which is
intuitive as an airline offers callable products if and only if it is beneficial to
itself. Proposition 3 indicates that, if there is no spill of low-fare customers,
offering callable products is a dominant strategy of both airlines and brings
Pareto gains to both.
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Proposition 3. Suppose that DLi and DT
Hi (i = 1, 2) are TP2. If there is no

spill of low-fare customers, the following inequalities hold:
(1) π00

1 < π10
1 , π01

1 < π11
1 ;

(2) π00
2 < π01

2 , π10
2 < π11

2 ;
(3) π00

i < π11
i , i = 1, 2.

Parts (1) and (2) of Proposition 3 indicate that offering callable prod-
ucts improves an airline’s revenue no matter whether the other airline offers
callable products. Thus, offering callable products is a dominant strategy of
both airlines. Parts (1) and (2) can be interpreted as follows. If Airline j
does not offer callable products, Airline i’s (i, j = 1, 2 and i ̸= j) revenue
when Airline i offers callable products is no lower than that when Airline
i does not offer callable products. If Airline j offers callable products, the
high-fare customers of Airline j spill to Airline i only when the realized high-
fare demand of Airline j is higher than the capacity of Airline j. Given this
situation, Airline i’s revenue when Airline i offers callable products is no
lower than that when Airline i does not offer callable products either. Thus,
offering callable products is a dominant strategy of both airlines.

Part (3) of Proposition 3 implies that offering callable products provides
Pareto gains to both airlines, which can be interpreted intuitively. Note that,
when one airline does not offer callable products, some of its high-fare cus-
tomers may spill to the other airline. However, if one airline offers callable
products, its high-fare customers spill to the other airline only when the re-
alized high-fare demand is higher than the capacity of the airline. Thus,
offering callable products provides Pareto gains to both airlines. In other
words, when there is no spill of low-fare customers, Proposition 3 demon-
strates that offering callable products is a dominant strategy of both airlines
and brings Pareto gains to both. When customers of both fare classes spill,
Section 5 numerically shows that offering callable products is no longer a
dominant strategy and may harm the revenues of the airlines.

4.3. Comparing the Competitors with a Monopolist
This subsection compares the behavior of two airlines in competition with

that of a monopolist. The monopolist may be two airlines in an alliance to
coordinate the revenue management decisions, i.e., booking limits (Graf and
Kimms, 2011; Kimms and Çetiner, 2012). Denote the optimal booking limits
of the monopolist to be BC

i (i = 1, 2) and the booking limits in equilibrium
to be B∗

i (i = 1, 2), respectively. Assume that B∗
i and BC

i are interior points,
i.e., B∗

i , B
C
i ∈ (0, Ci).

13



Proposition 4. When both airlines offer callable products, if DLi and DT
Hi

are TP2, and the two airlines are symmetric (i.e., pL1 = pL2, pH1 = pH2,
p1 = p2, C1 = C2, (DL1, DH1) and (DL2, DH2) are identically distributed),
the booking limits under competition are higher than those under monopoly:
B∗

i ≥ BC
i , where i = 1, 2.

Proposition 4 shows that, when the two airlines are symmetric, the air-
lines always provide more tickets to low-fare customers in the decentralized
situation compared to the centralized situation, which implies that the air-
lines compete more intensely for low-fare customers. This is different from
the result when the two airlines do not offer callable products: if only the
high-fare customers spill, the airlines set lower booking limits in the decen-
tralized situation; if only the low-fare customers spill, the airlines set higher
booking limits in the decentralized situation (Netessine and Shumsky, 2005).
The reason behind the difference is that when the low-fare tickets are callable,
the airlines can avoid cannibalization from the low-fare customers by recall-
ing the low-fare tickets, so both airlines pay more attention to the scramble
for the low-fare customers.

4.4. Impact of Price Parameters on the Booking Limits

The main difference between callable products and the regular products
is that callable products can be recalled at a pre-specified recall price. Ob-
viously, recall price has a great impact on the booking limits of the airlines.
Although recall price is not taken as a decision variable, we can examine its
impact on the booking limits through comparative static analysis.

Proposition 5. If DLi and DT
Hi (i = 1, 2) are TP2,

(1)B∗
i decreases with pi while increases with pj (i, j = 1, 2, i ̸= j);

(2)B∗
i increases with pLi while decreases with pLj (i, j = 1, 2, i ̸= j).

Part (1) of Proposition 5 shows that as the recall price of Airline i in-
creases, Airline i lowers its booking limit while Airline j raises its booking
limit. This result is intuitive as the higher the recall price of Airline i, the
higher the cost for Airline i to recall the low-fare tickets; at the same time,
Airline j has a comparative advantage in recalling the low-fare tickets. This
is also consistent with Proposition 1 which states that the best response func-
tions of the airlines are decreasing. The interpretation of Part (2) is similar
to that of Part (1). Note that the impact of pLi on Bi and Bj is opposite
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to that of pi, as the airlines weigh the deterministic revenue pLi against the
potential recall cost pi when determining the booking limits.

In addition, we find that the booking limits of the airlines are not affected
by the prices of the high-fare tickets. For the high-fare customers, the airline
could avoid cannibalization from the low-fare customers by recalling the low-
fare tickets. Therefore, when setting the booking limits, the airlines focus on
the tradeoff between the immediate revenue pLi and the potential recall cost
pi.

Proposition 6 examines the case in which the two airlines are symmetric,
i.e., pL1 = pL2 = pL, pH1 = pH2 = pH , p1 = p2 = p, C1 = C2 = C, (DL1, DH1)
and (DL2, DH2) are identically distributed.

Proposition 6. When the two airlines are symmetric, if DLi and DT
Hi (i =

1, 2) are TP2, B
∗
1 is equal to B∗

2 and
(1) both of them decrease with p;
(2) both of them increase with pL.

When the recall price increases, the airlines cost more to recall the low-
fare tickets, so they will lower the booking limits. We can consider the
following two extreme cases. First, if the recall price is equal to the price of
the low-fare tickets, the airlines will set the booking limit to be the capacity;
second, if the recall price is equal to the price of the high-fare tickets, the
game between the two airlines degenerates to that when the two airlines do
not offer callable products. Part (1) of Proposition 6 implies that, when the
two airlines are symmetric, the booking limits of the two airlines when they
offer callable products are higher than those when they do not offer callable
products. When the two airlines are asymmetric, numerical examples in
Section 5 shows that the result still holds.

5. Numerical Examples

In this section, we run numerical examples to examine, when both the
low-fare and high-fare customers spill, whether the two airlines offer callable
products and how callable products impact the booking limits and the rev-
enues of the airlines in equilibrium. Referring to the parameter values in
Netessine and Shumsky (2005), the parameter values are as follows.

• Capacity (C1 and C2). We run two sets of experiments: a symmetric
case with C1 = C2 = 200, and an asymmetric case with C1 = 200 and
C2 = 100.
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• Ratio of high fare to low fare (pH/pL). We define three scenarios,
pH/pL = [1.3, 2.6, 4], for both the symmetric and asymmetric cases.

• Recall price (p1 and p2). The recall prices of the two airlines are
assumed to be equal. We set p1 = p2 = pL + α(pH − pL), where
α = [0.4, 0.6, 0.8].

• Proportion of demand due to low-fare passengers. Let µLi and
µHi be the average low-fare demand and the average high-fare demand
of Airline i, respectively. For both the symmetric and asymmetric cases,
set γ = µLi/(µLi + µHi) = [0.5, 0.74, 0.9].

• Total demand and demand faced by each airline. We consider
two scenarios: first, the average total demand is equal to the total
airline capacity, i.e., µL1 + µH1 + µL2 + µH2 = C1 + C2, referred to as
TD = TC case; second, the average total demand is slightly larger than
the total airline capacity, where µL1+µH1+µL2+µH2 = 1.1(C1+C2),
referred to as TD = 1.1TC case. Describe the allocation of demand
between the two airlines in terms of load, where the load for Airline
i equals (µLi + µHi)/Ci. For ease of exposition, Table 2 presents the
loads of the two airlines in different cases.

• Variability. Netessine and Shumsky (2005) supposed the coefficient
of variation (CV) of the four demand distributions to be the same and
CV=[0.2, 0.33, 0.6]. To limit the number of parameters, we assume CV
of the four demand distributions to be the same and CV=[0.2, 0.6].

• Correlation. Netessine and Shumsky (2005) assumed the correlations
among all demand are equal and the correlation ρ = [−0.3, 0.0, 0.3, 0.6].
As stated by Netessine and Shumsky (2005), correlation among airline
demand classes is usually small and when correlation is significant, it
is more likely to be positive than negative. Thus, to limit the number
of parameters, we assume that the correlations among all demand are
equal and the correlation ρ = [0.2, 0.5].

• Probability density. For each of the scenarios, assume that the de-
mand distribution is a multivariate Normal distribution and is trun-
cated at zero. The negative values of the demand are added to a mass
point at zero.
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Cases l1 l2
symmetric, TD=TC [0.5, 0.75, 1] [1.5, 1.25, 1]
symmetric, TD=1.1TC [0.5, 0.8, 1.1] [1.7, 1.4, 1.1]
asymmetric, TD=TC [0.5, 1, 1.25] [2, 1, 0.5]
asymmetric, TD=1.1TC [0.5, 1.1, 1.4] [2.3, 1.1, 0.5]

Table 2: Loads of the Two Airlines in Different Cases.

When combined, the above parameters define 2*3*3*3*6*2*2=1296 sce-
narios. There are 648 scenarios in Netessine and Shumsky (2005). The
parameter values in the current paper are the same as those in Netessine and
Shumsky (2005) except CV and ρ. In addition, there is no recall price in
Netessine and Shumsky (2005). We use a simple gradient algorithm to find
the solutions and evaluate the gradients by Monte Carlo integration.

Proposition 3 shows that, when there is no spill of low-fare customers,
offering callable products is a dominant strategy and provides Pareto gains
to both airlines. When low-fare customers spill, numerical examples demon-
strate that whether the two airlines offer callable products and whether of-
fering callable products is beneficial to them mainly depend on the loads
and the capacities of the two airlines. For ease of exposition, we refer to the
case where the two airlines do not offer callable products as the case without
callable products and the case where both airlines could choose whether or
not to offer callable products as the case with callable products. We present
the numerical results in the symmetric case and the asymmetric case, respec-
tively.

In the symmetric case, we obtain the following three results. (1) When
the loads of the two airlines are not equal, and the ratio of high fare to low
fare (pH/pL) is low or the recall price (p1 and p2) is high, the airline with
a lower load does not offer callable products while the airline with a higher
load offers callable products in equilibrium. Specifically, if the parameter
values belong to Table 3, Airline 1 does not offer callable products while
Airline 2 offers callable products in equilibrium. Under other parameter
values, both airlines offer callable products in equilibrium. This result is
intuitive and we could interpret it as follows. Compared to the airline with
a higher load, the airline with a lower load is at a disadvantage. The ratio of
high fare to low fare being low or the recall price being high indicates that
the market is pessimistic to the airlines. This result implies that when the
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market is pessimistic to the airlines, the airline at a disadvantage does not
offer callable products in equilibrium. (2) When the loads of the two airlines
are not equal, the revenue of the airline with a higher (resp. lower) load
in the case with callable products is higher (resp. lower) than that in the
case without callable products. That is, the airline at an advantage always
benefits from offering callable products while the airline at a disadvantage
is always worse off no matter whether or not it offers callable products in
the case with callable products. Specifically, when the loads of Airlines 1
and 2 are different, Airline 2’s (resp. Airline 1’s) revenue in the case with
callable products is higher (resp. lower) than that in the case without callable
products. (3) When the loads of the two airlines are equal, both airlines
offer callable products in equilibrium and they are better off or worse off by
offering callable products simultaneously. If the ratio of high fare to low fare
(pH/pL) is high and the recall price (p1 and p2) is low, both airlines are better
off while they are worse off under other parameter values. Specifically, both
airlines are better off by offering callable products when the parameter values
belong to Table 4. Under other parameter values, both airlines are worse off
by offering callable products. Therefore, callable products may bring Pareto
gains or Prisoner’s Dilemma to the two airlines.

Cases l1 l2 pH/pL α

TD=TC
0.5 1.5

130 0.4, 0.6, 0.8
260 0.8

0.75 1.25
130 0.4, 0.6, 0.8
260 0.8

TD=1.1TC
0.5 1.7 130 0.4, 0.6, 0.8
0.8 1.4 130 0.4, 0.6, 0.8

Table 3: Parameter Values in the Symmetric Case under Which Airline 1 Does Not Offer
Callable Products While Airline 2 Offers Callable Products.

In the asymmetric case, we obtain the following three results. (1) When
the difference between the loads of the two airlines is large, and the ratio
of high fare to low fare (pH/pL) is low or the recall price (p1 and p2) is
high, the airline with a lower load does not offer callable products while the
airline with a higher load offers callable products in equilibrium. Specifically,
if the parameter values belong to Table 5, Airline 1 does not offer callable
products while Airline 2 offers callable products in equilibrium. Under other

18



Cases l1 l2 pH/pL α
TD=TC 1 1 260, 400 0.4
TD=1.1TC 1.1 1.1 260, 400 0.4

Table 4: Parameter Values in the Symmetric Case under Which Both Airlines Are Better
Off By Offering Callable Products.

parameter values, both airlines offer callable products in equilibrium. The
interpretation of the result is as follows. The revenues of the airlines depend
on the proportion of high-fare demand to capacity (i.e., µHi

/Ci) to a large
degree. Thus, compared to the other airline, whether an airline is at an
advantage depends on the ratio of their proportion of high-fare demand to
capacity. Note that µHi

/Ci = (1−γ)li, where i = 1, 2. Obviously, the higher
li is, the higher µHi

/Ci is. Therefore, an airline with a higher load is at an
advantage no matter whether its capacity is larger than the other airline.
This result implies that, when the market is pessimistic, the airline at a
disadvantage does not offer callable products in equilibrium. (2) When the
loads of the two airlines are not equal, the revenue of the airline with a higher
(resp. lower) load in the case with callable products is higher (resp. lower)
than that in the case without callable products. Specifically, if the load of
Airline i is higher, Airline i’s (resp. Airline j’s ) revenue in the case with
callable products is higher (resp. lower) than that in the case without callable
products, where i, j = 1, 2 and i ̸= j. This result is intuitive and is similar to
that in the symmetric case. (3) When the loads of the two airlines are equal,
both airlines offer callable products in equilibrium. If the ratio of high fare to
low fare (pH/pL) is low or the recall price (p1 and p2) is high, both airlines are
worse off by offering callable products. Specifically, if the parameter values
belong to Table 6, both airlines are worse off by offering callable products.
Under other parameter values, the airline with a higher capacity is better off
while the one with a lower capacity is worse off by offering callable products.
The result is intuitive. Note that, when the ratio of high fare to low fare is
low or the recall price is high, the market is pessimistic. So both airlines are
worse off by offering callable products. Moreover, when the loads of the two
airlines are equal, the airline with a higher capacity is at an advantage.

In general, when the low-fare customers spill, offering callable products
is no longer a dominant strategy and may harm the revenues of the airlines.
Numerical examples demonstrate that whether the two airlines offer callable
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Cases l1 l2 pH/pL α

TD=TC 0.5 2
130 0.4, 0.6
130, 260, 400 0.8

TD=1.1TC 0.5 2.3 130 0.4, 0.6, 0.8

Table 5: Parameter Values in the Asymmetric Case under Which Airline 1 Does Not Offer
Callable Products While Airline 2 Offers Callable Products.

Cases l1 l2 pH/pL α

TD=TC 1 1
130 0.4, 0.6
130, 260, 400 0.8

TD=1.1TC 1.1 1.1
130 0.6
130, 260 ,400 0.8

Table 6: Parameter Values in the Asymmetric Case under Which Both Airlines Are worse
Off by Offering Callable Products.

products and whether offering callable products is beneficial to them mainly
depend on the loads and the capacities of the two airlines. Especially, when
the difference between the loads of the airlines is large, the loads of the airlines
play the most important role. We obtain the following two insights: (1) if the
ratio of high fare to low fare is low or the recall price is high, the airline with
a lower load does not offer callable products in equilibrium; (2) the revenue
of the airline with a higher (resp. lower) load is higher (resp. lower) in the
case with callable products than that in the case without callable products.
When the difference between the loads of the airlines is small, the capacities
of the airlines play the most important role. If the difference between the
capacities of the airlines is also small, the two airlines are worse off or better
off by offering callable products simultaneously. If the difference between the
capacities of the airlines is large, the airline with a lower capacity is always
worse off by offering callable products while the one with a higher capacity
may be worse off or better off which depends on the ratio of high fare to low
fare and the recall price.

Furthermore, Proposition 6 implies that, when the two airlines are sym-
metric, the booking limits of the two airlines when they offer callable products
are higher than those when they do not offer callable products. Numerical
examples show that, the booking limits of the two airlines in the case with
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callable products are higher than those in the case without callable products.
This result is intuitive. In the case with callable products, one airline may
or may not offer callable products in equilibrium. If the airline offers callable
products, it can recall some of the low-fare tickets if needed, so it will set
a higher booking limit. If the airline does not offer callable products, its
opponent will offer callable products and set a higher booking limit. To cope
with the competition from its opponent, this airline will set a higher booking
limit than that in the case without callable products.

6. Conclusion

This paper introduces the concept of callable products into the capacity
allocation game between duopolistic airlines. We examine the impact of the
introduction of callable products on the revenues and the booking limits of
the two airlines. The analytical results demonstrate that, if there is no spill of
low-fare customers, offering callable products is a dominant strategy of both
airlines and provides Pareto gains to both airlines. If customers of both fare
classes spill, numerical examples demonstrate that whether the two airlines
offer callable products and whether offering callable products is beneficial
to the two airlines mainly depend on the loads and the capacities of them.
Moreover, numerical examples demonstrate that the booking limits of the
two airlines in the case with callable products are always higher than those
in the case without callable products.

There are some limitations in our study. First, to focus on airline compe-
tition with regard to booking limits, we take the prices as exogenously given,
including the prices of low-fare tickets, the prices of high-fare tickets and the
recall prices. Letting the prices be endogenous determined is a direction for
future research. Second, in our model, the low-fare tickets are either callable
or noncallable. In reality, airlines can sell both regular low-fare tickets and
callable tickets. One might explore the case in which the low-fare customers
can choose between regular low-fare tickets and callable tickets. Third, we
implicitly assume that the price of regular low-fare tickets and the price of
callable tickets are the same. In fact, the prices should be different.
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Appendix A. Proof of Proposition 1

Proof. Different from the proof of the existence of Nash equilibrium in Netes-
sine and Shumsky (2005), we apply Theorem 2.1 in Vives (2001) (as shown
in Lemma 1) to obtain the existence of Nash equilibrium more directly.

We first show the existence of the pure-strategy Nash equilibrium. The
strategy space of the game is [0, C1]×[0, C2] which is a bounded closed convex
set. In addition, according to Equation (2),

∂πi

∂Bi

= Pr(DT
Li > Bi)

(
pLi − piPr(DT

Hi > Ci −Bi|DT
Li > Bi)

)
= Pr(DT

Li > Bi)
(
pLi − piPr(DT

Hi > Ci −Bi|DLi > Bi − (DLi −Bj)
+)
)
.

(A.1)
As DLi and DT

Hi are TP2, DLi and DT
Hi are right tail increasing (Propo-

sition 2.3 of Joe (1997)), i.e., Pr(DT
Hi > Ci −Bi|DLi > Bi − (DLi −Bj)

+) is
increasing in Bi. It is obvious that ∂πi/∂Bi is always positive or first pos-
itive and then negative. Therefore, πi is quasi-concave in Bi. Apparently,
πi is continuous in both Bi and Bj. Referring to Lemma 1, there exists a
pure-strategy Nash equilibrium for the game.

In the following, we show that best response functions of the airlines are
decreasing. Similar to the proof of Proposition 2 in Netessine and Shumsky
(2005), when the best response functions are differentiable, we use the Im-
plicit Function Theorem (IFT) to show that they are non-increasing (Part
I). However, Part I does not eliminate the possibility of jumps up. Part II
demonstrates that the best response functions do not have jumps up. In Part
III, we show the uniqueness of the Nash equilibrium.

Part I By the IFT,

∂Bi

∂Bj

= − ∂2πi

∂Bi∂Bj

/
∂2πi

∂B2
i

. (A.2)

At Airline i’s best response, the inequality ∂2πi/∂B
2
i < 0 holds. We will show

that, when the first order conditions hold, the inequality ∂2πi/∂Bi∂Bj < 0
holds. Equivalently, we need to show that ∂πi/∂Bi monotonically decreases
in Bj.

∂πi

∂Bi

= Pr(DT
Li > Bi)

(
pLi − piPr(DT

Hi > Ci −Bi|DT
Li > Bi)

)
. (A.3)
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From Proposition 2.3 of Joe (1997), TP2 implies that DLi and DT
Hi are

right tail increasing, so Pr(DT
Hi > Ci − Bi|DLi > Bi − (DLi − Bj)

+) is
increasing in Bj. Thus the second item in (A.3) is decreasing in Bj, i.e.,
pLi − piPr(DT

Hi > Ci − Bi|DT
Li > Bi) is decreasing in Bj. If B

∗
i (B

∗
j ) is some

point on player i’s best response function, then ∂πi/∂Bi|(B∗
i ,B

∗
j )

= 0. So

pLi − piPr(DT
Hi > Ci − Bi|DT

Li > Bi) equals to zero at the point (B∗
i , B

∗
j ).

Denote ϵ as a sufficiently small positive amount, then pLi−piPr(DT
Hi > Ci−

Bi|DT
Li > Bi) is smaller than zero at the point

(
Bi(B

∗
j + ϵ), B∗

j + ϵ
)
. Thus,

∂πi/∂Bi|(Bi(B∗
j+ϵ),B∗

j+ϵ) is smaller than zero. Therefore, ∂πi/∂Bi decreases
with Bj.

Part II It needs to eliminate the possibility of jumps up in the best
response functions. The proof is similar to Part II in the proof of Proposition
2 in Netessine and Shumsky (2005), so it is omitted.

Parts I and II together know that the best response functions are decreas-
ing.

Part III We show that the Nash equilibrium is unique. The proof is
by contradiction. Suppose there are two different Nash equilibrium solutions
(B∗

i , B
∗
j ) and (B∗

i + δi, B
∗
j − δj). As the best responses are decreasing, δi and

δj are larger than zero or smaller than zero simultaneously. We only consider
the case where they are larger than zero. According to the definition of Nash
equilibrium and the first order condition for Airline i in Equation (2), we
have,

Pr(DT
Hi > Ci −Bi|DLi > Bi − (DLj −Bj)

+)

=Pr(DT
Hi > Ci −Bi − δi|DLi > Bi + δi − (DLj −Bj + δj)

+)

=
pLi
pi

.

(A.4)

The item after the first equal sign increases with δi and decreases with
δj. In order to guarantee that the first equality holds, δi should be smaller
than δj. Doing the same analysis to Airline j, we obtain that δi > δj, which
makes a contradiction. Thus, there is a unique Nash equilibrium.

Appendix B. Proof of Proposition 3

Proof. We only show that π00
1 ≤ π10

1 as the analysis of other parts are similar.
Referring to Equations (8) and (14), we obtain the following equation:

Pr(DT
H2 > C2 −B10

2 |DL2 > B10
2 ) = Pr(D̃T

H2 > C2 −B00
2 |DL2 > B00

2 ). (B.1)
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As D̃T
H2 > DT

H2, the inequality B10
2 > B00

2 holds. Therefore, we have the
following inequalities:

π00
1 = π00

1 (B00
1 , B00

2 ) ≤ π00
1 (B00

1 , B10
2 ) ≤ π00

1 (B00
1 (B10

2 ), B10
2 )

≤ π10
1 (B00

1 (B10
2 ), B10

2 ) ≤ π10
1 (B10

1 , B10
2 ) = π10

1 .
(B.2)

The first inequality holds as ∂π00
1 /∂B2 > 0. Note that an incremental

increase in the booking limit of one airline results in more high-fare customers
for the other airline but has no effect on the low-fare demand of the other
airline.

The second inequality holds as in the first scenario B00
1 (B10

2 ) is the best
response of Airline 1 to the booking limit B10

2 of Airline 2.
The third inequality holds as callable products can bring riskless revenue

improvement.
The fourth inequality holds as in the second scenario B10

1 is the best
response of Airline 1 to the booking limit B10

2 of Airline 2.

Appendix C. Proof of Proposition 4

Proof. The objective function of the alliance is the sum of the two airlines’
objective functions, π = πi + πj, and the centralized optimality condition
∂(πi + πj)/∂Bi = 0 can be written as

Pr(DT
Hi > Ci −BC

i |DLi > BC
i − (DLj −BC

j )
+))

=
pLi
pi

+
∂πj

∂Bi

1

piPr(DLi > BC
i − (DLj −BC

j )
+))

.
(C.1)

Clearly, ∂πj/∂Bi is larger than zero as an incremental increase in the
booking limit by one airline results in fewer low-fare customers for the other
airline but has no effect on the high-fare demand of the other airline.

The decentralized optimality condition ∂πi/∂Bi = 0 can be written as

Pr(DT
Hi > Ci −Bi|DT

Li > Bi) =
pLi
pi

. (C.2)

Comparing Equations (C.2) and (C.1), we find that

Pr(DT
Hi > Ci −B∗

i |DLi > B∗
i − (DLj −B∗

j )
+) >

Pr(DT
Hi > Ci −BC

i |DLi > BC
i − (DLj −BC

j )
+).

(C.3)

24



According to Proposition 1, the Nash equilibrium exists, so in the sym-
metric case, there is a symmetric Nash equilibrium (B∗

1 = B∗
2) which is also

the unique one as Proposition 1 also demonstrates that the Nash equilibrium
is unique. Therefore, B∗

i = B∗
j < BC

i = BC
j or B∗

i = B∗
j ≥ BC

i = BC
j . As

DLi and DT
Hi are TP2, only the latter case holds.

Appendix D. Proof of Proposition 5

Proof. The proofs of Part (1) and Part (2) are similar, we only present the
proof of Part (1) here.

Denote the Nash equilibrium solution as (B∗
i , B

∗
j ) when the recall prices

are pi and pj. If pi increases to p
′
i, denote the corresponding Nash equilibrium

solution by (B
′
i, B

′
j). (B∗

i , B
∗
j ) and (B

′
i, B

′
j) satisfy the optimality condition

(C.2). So,

Pr(DT
Hi > Ci −B∗

i |DLi > B∗
i − (DLj −B∗

j )
+) >

Pr(DT
Hi > Ci −B

′

i|DLi > B
′

i − (DLj −B
′

j)
+),

(D.1)

Pr(DT
Hj > Cj −B∗

j |DLj > B∗
j − (DLi −B∗

i )
+) =

Pr(DT
Hj > Cj −B

′

j|DLj > B
′

j − (DLi −B
′

i)
+).

(D.2)

Now consider the following four cases:
1. B∗

i < B
′
i, B

∗
j < B

′
j. Given the TP2 assumption, the probability item

in (D.1) is increasing in both Bi and Bj, so this case is impossible to happen.
2. B∗

i < B
′
i, B

∗
j > B

′
j. As the probability item in (D.1) is increasing in

both Bi and Bj, the increment of Bi increases the probability item in (D.1)
and the decrement of Bj decreases the probability item in (D.1). In order
to guarantee Inequality (D.1) holds, the inequality |B∗

i − B
′
i| < |B∗

j − B
′
j|

must hold. However, the analysis of Inequality (D.2) leads to an opposite
requirement |B∗

i −B
′
i| > |B∗

j −B
′
j|, which is a contradiction.

3. B∗
i > B

′
i, B

∗
j > B

′
j. Given the TP2 assumption, the probability item

in (D.2) is increasing in both Bi and Bj, so this case is impossible to happen.
The only remaining case is that B∗

i ≥ B
′
i and B∗

j ≤ B
′
j. Therefore, B∗

i

decreases with pi while B∗
j increases with pi.

Appendix E. Proof of Proposition 6

Proof. The proofs of Part (1) and Part (2) are similar, we only present the
proof of Part (1).
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The optimality condition (C.2) requires that, if (Bi, Bj) is an equilibrium
solution, the following equation holds:

Pr
(
DT

Hi > Ci −Bi|DLi > Bi − (DLj −Bj)
+
)
=

pL
p
. (E.1)

According to Proposition 1, the Nash equilibrium exists. Thus, in the sym-
metric case, there must exist a symmetric Nash equilibrium (B∗

i , B
∗
j ) where

B∗
i = B∗

j , which is also the unique one as Proposition 1 also demonstrates
that the Nash equilibrium is unique. As p increases, B∗

i and B∗
j increase

or decrease simultaneously. If they increase simultaneously as p increases,
the left hand side of Equation (E.1) increases while the right hand side of
(E.1) decreases, which leads to a contradiction. Therefore, B∗

1 and B∗
2 both

decrease with p.
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