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Abstract: This paper presents an application 
of genetic algorithms for dynamic lotsizing 
problems, including the implementation 
methodology and the testing results of the 
algorithms. Currently, most of the existing 
studies for dynamic lotsizing problems 
concentrate on heuristic lot-sizing techniques 
which only consider some simple production 
structures andor simple external demands 
strctures. In this paper, the general dynamic 
lot-sizing problems are considered, which are 
characterized by the fact that each stage may 
have several predecessor and/or successor 
stages, all the items can have independent 
requirements, andor all the cost parameters 
can be time-varying. A genetic algorithm for 
the problems is introduced, which attempt to 
heuristically optimize under all the conditions 
simultaneously. As to my knowledge, this 
genetic algorithm is the first one capable of 
solving such general dynamic lotsizing 
problems. In order to apply genetic algorithm, 
a coding scheme for lotsize pladschedule is 
given and a feasibility routine is presented. In 
computational experiments, this genetic 
algorithm performed extremely well. It is 
concluded that the genetic algorithm is 
efficient and effective for dynamic lotsizing 
problems. 

Keywords: Prodtiction planning/scheduling, 
lotsizing problems, genetic 
algorithms 

1. ~ ~ t r o ~ u c t i o ~  

The wide-spread and popular use of material 
requirements planning (W) systems in 
industry has resulted in increased interest in 
the topic of decision-making in multi-stage 
production systems As firms have 
incorporated M R P  concepts into their 
production planning and distribution system, 
the multi-item multi-stage dynamic lot-sizing 
problem has become a problem of prime 

importance, because the lot-sizing procedures 
used by currently available MRP systems are 
quite limited in their ability to coordinate 
production plans of various stages of the 
manufacturing process and various patterns of 
external demands cost parameters for items. 

Many researchers have studied the problem 
and a lot of lotsizing procedures have been 
presented. For example, Gupta and Yeung [7],  
Coleman [5], Agganval and Park [43, 
Lambrechet et al. [9], Rosling [12], Afentakis 
[l], Afentakis et al. 131, Heinrish and Schn. 
[SI, Afentakis and Gavish[2] are some review 
papers or recent advances. Since most of the 
problems are NP-hard (Maes et al.[lO]), most 
of the existing algorithms use heuristic 
techniques to solve the problem approximately. 
Currently, most of the existing studies €or 
dynamic lotsizing problems concentrate on 
heuristic lot-sizing techniques which only 
consider some simple production structures 
and/or simple external demands strctures. For 
example, the dynamic lotsizing problems in 
general production structures are seldom 
considered. This is an obstacle to the real 
application of these lotsizing techniques in 
production planning and scheduling. 

Recently, genetic algorithms are deeply 
studied and widely used in combinatorial 
optimization problems and a lot of successful 
application instances and good results are 
reported (Goldbergl61, Reeves[ll], etc.). But 
as to my knowledge, the application of genetic 
algorithms for multi-item multi-stage dynamic 
lotsizing problems is not suggested. 

In this paper, the general lot-sizing problems 
are considered, which are characterized by the 
fact that each stage may have several 
predecessor andor successor stages, all the 
items can have independent requirements, 
and/or all the parameters can be time-vaqing. 
A genetic algorithm for the problems is 
introduced, which attempt to heuristically 
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optimize under all the conditions 
simultaneously. In order to apply genetic 
algorithm, a coding scheme for lotsize 
pladschedule is given and a feasibility routine 
is presented. In computational experiments, 
this genetic algorithm performed extremely 
well. It is concluded that the genetic algorithm 
is efficient and effective for dynamic lotsizing 
problems. 

2. Mathematical formulation of the problem 

In this paper, we consider the following multi- 
item multi-level dynamic lotsizing problem: 
Given the external demand for N items over 
a time horizon of T periods, find the solution 
which minimizes total setup, production and 
holding cost, satisfying the folllowing 
conditions: 

e The product structure can be prlesented 
as an acyclic directed network, where 
every node is a item and the arc 
illustrates the assembly or distribution 
relation between items, and the weight 
of an arc is the quantity relation 
between the two end nodes of the arc. In 
general production systems, each node 
can have more than one immediate 
predecessors and/or more than one 
immediate successors. (Usually we 
assume that all the nodes be numbered 
as satisfying the condition that the 
number of each predecessor is greater 
than that of each of its successes.) 

e The production capacity is assumed 
enough, so no capacity constraints 
considered. Moreover, the production 
of items is instantaneous, despite: of the 
production quantity. 

e The backlogging of end items is not 
allowed. 

0 The lead times are assumed to be 
constant and, without loss of generality, 
are assumed to be zero. 

Mathematically, this problem can be skated as 
follows : 

Min COST(Y,X, I )  

where the known parameters are 

N = the number of items, 
T = the number of time periods, 
4, = the external demand for item i in 

s(i) = the set of immediate successors 
period t , 

of item i , ( S ( i )  = 0 if i is an end item), 

q, = the number of units of item i 
required to produce one unit of j , 

S,, = the setup cost item z in period t , 
e,, = the production cost for unit item i 

h,, = the holding cost for unit end-of- 
in period t , 

period inventory of item i in period t , 

and the decision variables are 

x,, = the amount of item z produced 
in period t (lotsize ), 

K, = a binary variable indicating where 
production is allowed for item i in period t , 

I,, = the inventory of item z at the end 
of period t . 

Most of the concepts above mentioned can be 
find in many papers on multi-item multi-level 
dynamic lotsizing problems. For example, the 
mathematical formulation given by Maes et al. 
[lo] is very similar to GDLP except that the 
overtimes of resources are not included in it. 

3. Genetic algorithm of the problem 
Problem GDLP 

A genetic algorithm of a optimization problem 
is an iterative procedure to heuristically search 
the optimal solution of the problem. Three 
basic genetic operators included in the 



procedure are known as reproduction. 
mutation and crossover (Goldberg[6], 
Reeves[ 1 I ] ,  etc.). All these operators work on 
the decision variables. During design a 
genetic algorithm to solve a problem, we first 
must give a coding scheme of the decision 
space of the problem. 

The decision variables in GDLP are X I , ,  xt 
and I,, among which xt is a 0-1 integer 
variable and the others are positive real 
number variabies. But to code a real number is 
too complicated to be accepted in designing a 
genetic algorithm of GDLP. In order to design 
a computationally efficient genetic algorithm, 
we will only consider the setup pattern 
variables xt as decision variables. The other 
real number variables will be considered as 
being dependent on qt and so they can be 

computed from qt and known parameters of 
the problem. Tken the most important 
problem in designing the genetic algorithm is 
how these variables are computed from yt 
and known parameters of the problem. 
Making use of a useful property of dynamic 
lotsizing problems, we can build up the 
relationships between real number variables 
and y, andor known parameters of the 
problem. 

Denote population size as kMXP0P (a even 
number) and maximum iteration times (i.e. 
maximum generations) as MAXGEN . The 
j th individual (i.e. decision variable) in g t h  
generatjon (i.e. iteration) is coded as 
following: 

There is following property (usually named 
“ zero-switch ” property) for dynamic 

lotsizing problem (Afentakis and Gavish[2]): 

Proposition. There is an optimal solution to 

GDLP in which x ~ ~ I ~ , ~ - ~  = 0. 

Given production sequence 
{ K t ,  i = l,..., N ,  t = l , - . * , T ) ,  

n e  car, determine the production lotsizes as 
following according to “ zero-switch ” 

property 

(i) If KT = o ,  then X l r  = o ;  
(ii) If rz, = 1, qr2 = 1, T,  < z2 5 T 

and y, = 0 for T! < T <  T 2 ,  (or KT = 0 for 

T] < T I  T. let x,TTi = 1, z2 = T+1), then 
?, -1 

In order to assure feasibility (i.e. no 
backordering is allowed), we change the 
objective function to including penalty items. 
That’s to say, before computing the fitness 
value of each individual, we compute the 
objective values of all individuals according to 
the following objective function: 

N T  +m x [ max 0, - l i t  1 l2 ( 6 )  
I = ]  t=l 

where p is penalty coefficient (a big enough 
positive number). 

Now we can describe the genetic algorithm for 
dynamic lotsizing problems as following: 

Algorithm AG 

Stepl. g = 0. Randomly initialize 

oldpop = {Y ‘J , J = 1,2,. . . , MAXPOP } , 
the population set in g th generation. 

Step2. If g = MAXGEN , print the 
solution and stop. 

Step3. For each 

Yo’ Eddpop,J = 1,2;.-,MAXPOP, 
compute its objective function value as 
following 

3.1. Determine xJ according to Yo’ 
(compute from item 1 to N )  

If 

q j  =1,x;j =1(1I t ,  <t2  I T + 1 )  
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x;:=o ( E t ,  < z < t , I T + l )  

3.2. Determine I’ ( I i < o ( V i 7 j )  are 

known parameters) according to X’ 
(compute from period 1 to T for cach item): 

3.3. Compute the corresponding 
objective function value (including penalty 
items) according to (6) from Yo,’, X J  ,AT’. 

Step4. Produce 

newpop = ( ~ ‘ 7 ~  , j  = 1,2; a . ,  MAXPOP 1,  
the population set in ( g  + 1) th generation: 

4.1. Compute the fitness value 

f22(Yo,’) for each indwidual YOxJ according 
to their objective fimction values obtained in 
step3.3 : 

’WXPOP 

fit (Y Os’ ) = &fax COSTP ( Y ‘J ) + E - C O S P  ( Y OJ ) , 
,=I 

j = 1,2;..,MAXPOP, 
where E is a positive constant and 
COSTP (Y)  = COSTP ( Y , X , I ) .  

4.2. (ReproductiodSelection) Select 

Yo,” , Yo,J2 from the set oldpop according to 

fitness values. The probability to select Yo,’ is 

‘WiXPOP 

1=1 

PY(YO’J) = j t ( Y O J  )/ 2 j t ( Y ” ’ ) ,  

j = 1,2,--.,MAXPOP . 
4.3. (Mutation) If the mutation 

probability is p,, then after mutation, 

y’e.’ - yy, in probability of 1-p,,,, 
- { y ? ,  in probability of p,,,, 

i = j ,  J2 
Here 

4.4. (Crossover) If the crossover 
probability is pc, then after crossover, 

in probability of l - p c ,  

in probabiliy of p,,,, 

j = j ,  , j 2  
Here randomly select a crossover position 
s( 1 5 s 5 N T )  and then 

y”O.1) = (q’O.j> , G’o.jl . , , p! ,q:; , q:: , . . . ,y’O& 

y”O.12 = (q’o .12  , yz’o.j2 . . . ~ ‘ 0 . 1 2  , 
2 1  NT 

, q::! , . . . , y$ ) , ) 5  

4.5. Add new individuals Yi”’ , Y1>’’ 
to the set newpop . 

4.6. If all MAXPOP individuals are 
produced, go to steps; otherwise go to step4.2. 

Steps. g = g+ 1,oldpop=newpop, 
i.e. r:~’ = r;,J , ’ i j i , t ,  j ,  and go to step2 

4. Computational Experiments 

The performance of the algorithm described in 
the previous section will be evaluated on a set 
of testing problems. The algorithm are 
programmed with Borland C++ 3.1 running 
under MS-DOS 6.2 on a compatible 
PC486DX2-SO. The experiments reveal that 
this algorithm obtain very good 
approximation solution of GDLP in 
reasonable computation time. Following are 
some of the examples of the experiments. 

We use the following control parameters for 
testing this genetic algorithm: 
0 Maximum generations WGEN=lOO;  
0 Population size MAxPOP.30; 
e Mutation Probability pm=0.033; 
0 Crossover Probability p,=0.6. 

Example 1. (Single Item) This example uses 
the famous classical test data given by Wagner 
and Whitin[ 131, N=l, T=12 (Table 1).  

We have run algorithm GA for 20 times for 
this problem, and algorithm GA always find 
the optimal value 864 in our experiments. 
Following are a typical output: 
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gen= 0 min= 946 max= 2433 avg= 1171 
gen= 1 min= 946 max= 1197 avg= 1105 
gen=2 min= 888 max= 1397 avg= 976 
gen=3 min= 888 max= 1397 avg= 976 
gen=4 min= 888 max= 1339 avg= 930 
gen= 5 min= 864 max= 1339 avg- 916 

Here "gcn" denotes the iterative times 
(generations); "min" , max" and "avg" 
denotes, respectively, the minimum, 
maximum and average cost found in this 
generation. 

Example 2. (General Systen) Production 
structure is shown as Fig.1, N=4, T=5. 
Testing data is shown in table 2. 

Fig.  1 Product S t r u c t u r e  f o r  Example 2 

Table 2. Testing data for example 2 

t 1 1 2 3 4 5 6  

2 5 1 3 1 0  4 

0 2 5 0 0 1 0  

1 0 2 0 0 1  

0 0 3 0  

5 5 5 5 5 5  

1 1 1 1 1 1  
1 1 1 1 1 1  

Using a complete enumeration method, we 
can find the optimal value for this problem is 
625. For this problem, algorithm GA also 
always find the optimal solution in our 
experiments. Following are a typical output: 

gen=O min= 755 max= 1365 avg= 1002 
&en= 1 min= 755 max= 1048 avg= 954 
gen=2 min= 723 max= 1047 avg= 800 
gen=3 min= 723 max= 1047 avg= 771 
gen=4 inin= 676 max= 1015 avg= 739 
gen= 5 min= 671 max= 1026 avg= 754 
gen=6 min= 645 max= 905 avg= 696 
gen=7 min= 645 max= 1161 avg= 739 
gen= 8 min= 645 max= 1161 avg= 699 
gen= 9 min= 625 max= 1161 avg= 676 

These examples reveals that the genetic 
algorithm GA is an effect and effective 
algorithm for solving general dynamic 
lotsizing problems. 

5. Summary 

We developed a genetic algorithm for general 
multi-item multi-leva1 dynamic lot-sizing 
problems. Product structure can be any type, 
each item in the system can have external 
demands and the cost parameters (setup cost, 
holding cost, production cost ) can be time- 
varying. Experiments show that this method is 
effective and efficient. 

This implementation methodology can also 
used in designing genetic algorithms for 
capacitated lotsizing problems ( X e  et. al. 1141). 
For the application of genetic algorithms for 
lotsizing problems is just at its beginning, 
more theoretical analysis and computation 
experiments should be made to this kind of 
genetic algorithms. 
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