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An intelligent hybrid system for customer requirements analysis and
product attribute targets determination

R. Y. K. FUNG² *, K. POPPLEWELL ³ and J. XIE§

Aligning its quality initiatives in synchronization with the customer’ s perception
of values is one of the key management strategies for improving the competitive
edge of an organization. Therefore, it will be a distinct advantage if one can
succeed in e� ectively capturing the genuine and major customer attributes
(requirements), systematically analysing and duly transforming them into the
appropriate product attributes (features). This paper puts forward a novel
approach for analysing customer attributes and projecting them into the relevant
design, engineering and product attributes in order to facilitate decision-making
and to guide downstream manufacturing planning and control activities. The
proposed hybrid system incorporates the principles of quality function deploy-
ment, analytic hierarchy process and fuzzy set theory to tackle the complex and
often imprecise problem domain encountered in customer requirement manage-
ment. It o� ers an analytical and intelligent tool for decoding, prioritizing and
inferring the qualitative, sometimes vague and imprecise Voice of Customer. As a
result, the appropriate product attributes can be mapped out and their relevant
design targets can be determined quantitatively and consistently. The software
supporting the hybrid system is constructed within a generic framework which
can be easily customized and con® gured into speci® c enterprise models capable of
o� ering more timely responses to the dynamic market demand.

1. Introduction

At a time when supply of most consumer goods has far overtaken demand,
market competition is becoming increasingly intense. An organization can no
longer be guaranteed growth or even survival if it solely relies on high volume
production based on a set of self-de® ned speci® cations and quality standards.
researches suggest that the traditional reactive technology-led or èconomy of
scale’ approach was only applicable at a time when markets were less discriminating
and v̀alue for money’ seemed to be the key deciding factor for choosing a certain
product among many others. However, as the markets become more sophisticated,
in addition to competitive pricing and outstanding product performance, a more
proactive market-driven strategy is equally important. Being able to o� er a wider
range of customized services (i.e. èconomy of scope’ ) is becoming increasingly
important for gaining a competitive edge (Bennett and Forrester 1993). This shift
of emphasis marks the transformation from a product focused era to a market
oriented one. In order to be more responsive to the market, one has to go out to
the customers and understand their actual needs and wants in order to duly
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respond to their requirements. Apart from conforming to its internal standards, a
forward looking enterprise must be more alert in keeping customers satis® ed by
o� ering the kind of quality and values perceived by the market at a level at
least compatible with if not superior to those of their competitors (Suzaki 1993).
Hence, aligning the people, processes and products in a company closely with the
evolving needs of the market are among the ® rst steps towards gaining customer
satisfaction.

The journey of gaining satis® ed customers begins with e� ective capturing,
analysing and understanding their genuine requirements. Customer attributes, some-
times called the Voice of Customer (VoC), tend to be linguistic and usually non-
technical in nature. It can be di� cult at times for engineers to translate the VoC into
de® nitive product and engineering speci® cations. The concepts of quality function
deployment (QFD), which originated in Japan in the 1960s and became increasingly
popular in the western world in the 1980s, have been widely adopted for customer
attributes analysis in various business sectors (Bossert 1991, Cohen 1995). With the
QFD approach, the VoC is analysed, categorized and transformed into technical
terms for subsequent follow-up actions by engineers at every stage of design and
manufacture including parts planning, process planning and production planning
etc. Such a multi-stage exercise can be represented by a number of inter-connected
structured matrices, each of which can be graphically described in a House of
Quality (HoQ) (Hauser and Clausing 1988). The basic building blocks of a conven-
tional HoQ are outlined in Fig. 1.

However, as a product becomes more complex, the information held in the HoQ
can become so congested to the extent that the key issues might be over-shadowed or
even overlooked. Hence, the interpretation of market-perceived quality and values
into a set of appropriate technical actions can be a rather complex process. Di� erent
departments or divisions within an organization may not have identical perceptions
and ideas of what product quality and values they are to o� er. Similarly, as the
number of trading partners increases, suppliers and consumers are even less likely to
be in any better agreement (Gilmore 1974, Garvin 1988). In addition to these con-
ceptual variations and the multi-dimensional rami® cations of product quality and
customer perceived values, the process of interpreting customer attributes is further
complicated by the inherent ambiguity, vagueness and imprecision innate in the VoC
due to various reasons, such as:

� Inadequate understanding the knowledge of the product design or the
technology employed;

� Inexactness in describing the problem;

� Distortions or misinterpretations of messages somewhere along the
line;

� Insensitivity and complacency of the service suppliers or vendors in detecting
or decoding the VoC etc.

Owing to a combination of these factors, the interpretation of the linguistic VoC
into some de® nitive engineering characteristics and product attributes will probably
involve certain transformations which might well be non-linear in nature. This
research puts forward a hybrid approach for processing the VoC and o� ers an
intelligent system for responding to various market demands with the appropriate
design targets.
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2. The acquisition of customer attributes

Customer attributes have been recognized as a major driving force for a
company’ s continuous strife for improved product functionality, consistent quality
performance, and a timely and uninterrupted supply, all available at a com-
petitive price. In order to o� er a remarkable standard of service, this entire chain
of activities must be e� ectively managed from initial product conception through
design, engineering, customization, production, distribution as well as after-sales
services.

Customer requirements are becoming increasingly rigorous and dynamic these
days to the extent that they behave like moving targets at times. However, it is
equally valid that being able to e� ectively capture and understand the needs and
wants of the customer and to respond to them promptly in one’s product o� erings is
a prerequisite for gaining market acceptance and customer satisfaction.

As has been vividly demonstrated in successful enterprises world-wide, a
thorough understanding of these customer and market related messages has
helped them formulate those product attributes which are considered charming,
attractive and distinctive by the customers (Kuehn and Day 1962, Dale 1994).
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2.1. Capturing, categorizing and prioritizing customer attributes
The process of satisfying customers or outperforming their expectations begins

with e� ectively soliciting their di� ering needs and wants which may be non-technical
and imprecise in nature. Customer attributes might come from di� erent customer
groups in various market sectors through di� erent channels, such as interviews,
questionnaires, feedback from sales agents and retailers, customer comments and
complaints as well as ® eld maintenance reports. Based on their impacts on the target
customer groups, there are essentially four types of customer attributes/requirements
(Kano et al. 1984), i.e. expected requirements, high-impact requirements, low-impact
requirements and hidden requirements. They have di� erent marketing impacts and
consequences as they are ful® lled. Further studies show that the importance of
customer attributes can be explicitly stated or implicitly revealed (Edwards 1968).
In the former case, the importance is usually stated by the customers in the form of
product functions and features, whereas the e� ectiveness of the implicit attributes
can only be re¯ ected through their contributions towards the overall performance of
the products. The VoC usually comes in qualitative forms, however, their perfor-
mance measures and other associated data should as far as possible be expressed
quantitatively so as to facilitate other downstream analyses and planning.

Owing to their diverse and linguistic nature, customer attributes usually need to
be categorized prior to further analyses. The concept of the à� nity diagram’
(Bossert 1991) was adopted in this research to take advantage of its creative proper-
ties instead of solely relying on logical or intellectual reasoning as with other
statistical methods. With this approach, team work and the active participation
from all related departments are required to interpret the captured customer attri-
butes into simple and representative expressions or phrases. These statements can
then be bundled into a number of a� nity groups, and the phrase that manages to
capture the primary theme and key points of the group is selected as the header while
its group members can be strati® ed in a tree structure. A� nity diagrams are applic-
able to `map the geography’ of the key areas under circumstances where the
problems tend to be complex and the facts and thoughts are in chaos. Through
team e� orts, the scope of thinking can be substantially expanded, and the creation
of new ideas becomes more possible.

The resulting categories obtained from the a� nity diagram are then prioritized to
assist more e� ective resource deployment. In order to encourage objectivity and
consistency in attributes prioritization, a well proven decision-making methodology,
the ànalytic hierarchy process’ (AHP) (Saaty 1990, 1994) was adopted in the pro-
posed hybrid model. This technique decomposes a problem into levels of prioritized
subordinates and alternatives with known reliability and consistency according to
their inter-relationships. The prioritization process begins with comparisons on the
customer attributes pairwisely through intuitive reasoning against an identi® ed
design goal or a speci® c market focus. In this work, the mechanics of AHP is
supported by a proprietary software package, Expert Choice (1986). As a result,
the relative weights of importance among categories as well as among the individual
attributes in each category and sub-category can be established through combining
the distinct features of the a� nity diagram and AHP.

2.2. Mapping the customer attributes onto the relevant product attributes
To duly address each customer attribute, its technical as well as ® nancial impli-

cations have to be considered in order to arrive at certain feasible solutions, and
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some of the ideas might be initially generated by the customers themselves. These
solutions can be collectively called the Voice of Designer (VoD) taking the form of
product attributes or design features. With these details, a knowledge-base interlink-
ing the customer demands and the enterprise responses can be established to facil-
itate the formulation of marketing and corporate strategies.

The concept of QFD (Bossert 1991, Cohen 1995) has been widely used in manu-
facturing industry for analysing customer attributes and subsequently projecting
them on to the relevant product and engineering attributes. As illustrated in Fig.
2, an HoQ is primarily a graphical tool for describing the relationship and correla-
tion between the attributes, and quite often showing the relative performance of the
competitors in the same information architecture (Hauser and Clausing 1988). In
this conventional HoQ, the relationships between the attributes are usually described
by symbols, such as space, D , O. . . , etc. each of which is assigned a numerical value
on a selected scale. For instance, with the 1± 3± 9 scale, zero stands for `not related’ , 1
for `possibly related’ , 3 for `moderately related’ and 9 for s̀trongly related’ .
Alternatively, other scales, such as 1± 5± 9, can also be applied.

To go beyond the qualitative representation of attributes relationships in a con-
ventional HoQ, the authors propose to express the information in numerical terms
using the AHP technique. The resulting QFD data can be represented quantitatively
in a focused HoQ as shown in Fig. 3. In the process of mapping customer attributes
towards the relevant product attributes, it is not unusual to ® nd that while a product/
engineering attribute works very well in ful® lling certain customer attributes, it might
adversely a� ect others. Hence, entries to the matrices in a HoQ can be positive as
well as negative.

Although the HoQ is in general a comprehensive tool for showing the relation-
ships between attributes, sometimes it lacks the ¯ exibility to deal with the inexact-
ness, undecideability and vagueness innate in the semantics of the VoC. Moreover,
the target values, which represent the design/technical speci® cations for individual
product attributes in ful® lling speci® c customer attributes, are usually decided
according to the experience and subjective judgement of the product designers.
Accurate target values are essential for supporting subsequent process planning
and production activities, however, no systematic and generic methods are available
hitherto for determining these product design targets consistently. It may be due to
the fact that tremendous product knowledge and design experience supported by
intense engineering e� orts will be required to construct such a system. In this paper,
an e� ective and analytical methodology for mapping the customer attributes onto
relevant product attributes and subsequently determining their target values using
Fuzzy inference is expounded. This approach represents a major breakthrough in
QFD research and applications.

3. A Fuzzy approach for customer attributes interpretation

In order to overcome some of the inherent limitations in conventional inter-
pretation and mapping of customer attributes onto the relevant product attributes,
the Fuzzy Customer Requirements Inference System (FCRIS) was developed in
this work. It amalgamates the characteristics of QFD and Fuzzy Set theory, o� ering
a more dynamic and tolerant algorithm for coping with linguistic attribute state-
ments of varying degrees of exactness and precision in the VoC (Zadeh and
Kacprzyk 1992, Cox 1994). The system is capable of performing approximate
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reasoning in speci® c domains based on the knowledge and experience available in the
company as well as the requirements of the customer which may not necessarily be
su� cient nor explicit. In essence, FCRIS is designed to process the diverse and often
imprecise VoC to establish the relevant product design targets using the theory of
fuzzy inference.
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Figure 3. A focused HoQ showing the quantitative relationships between attributes and
their relative weight of importance.



3.1. The basic principles of fuzzy systems
The concept of fuzzy logic or fuzzy sets was initially conceived by Lot® A. Zadeh

(1965). He described the theory of fuzzy sets as a theory in which everything is a
matter of degree. A fuzzy set is de® ned as a class of objects with a continuum of
degrees of membership characterized by a membership function which assigns to
each object a grade of certainty ranging between zero and one, and thus permitting
partial membership. It behaves di� erently from a conventional Boolean (crisp) set in
which only two values, i.e. absolute inclusion (1) or absolute exclusion (0) can exist.
Fuzzy systems are applicable to most real life scenarios which tend not to be dichot-
omous and descriptions of their nature are quite often imprecise. Fuzzy sets o� er a
strict mathematical framework in which vague conceptual phenomena can be pre-
cisely and rigorously dealt with. In other words, there is nothing fuzzy about fuzzy
logic. Since its inception, the concept has advanced in various directions and has
found applications in many disciplines. Particularly in the last decade or so, fuzzy set
theory experienced tremendous growth, showing remarkable results in a wide range
of applications. Full discussions of fuzzy set theory can be found in Zadeh (1965,
1975a & b, 1976), Zimmermann (1991) and Cox (1994).

4. General features of the proposed fuzzy customer requirement inference system

The architecture of FCRIS, as described in Fig. 4, comprises the following build-
ing blocks:

(1) A knowledge base, which contains customer and product data, fuzzy rules, or
other forms of knowledge required to support design decision-making;

(2) A user interface, through which the input data and decision support informa-
tion is communicated between the system and the external environment; and

(3) An inference engine, which contains an interpreter and an approximate
reasoning routine, governing how the data and rules can be applied to
infer new knowledge.

4.1. Knowledge acquisition and representation in FCRIS
The knowledge base in FCRIS is divided into the following partitions:

(1) K-CA, knowledge of the customer attributes, which is captured through
various ways and means as described in § 2.1 and expressed in fuzzy sets or
fuzzy membership functions.

(2) K-PA, knowledge of the product attributes, which covers details of product
functionality, features and their corresponding engineering characteristics. It
is established through group discussions, engineering analyses or by applying
self-learning algorithms in speci® c neural nets. The derived information can
be expressed in the form of fuzzy sets or membership functions.

(3) K-CA-PA, Knowledge of the relationships between the customer attributes
and product attributes, which can be established through the interactions and
collaborations between the marketing, design, engineering and manufactur-
ing personnel in a company. The data are usually expressed in the form of
fuzzy inference rules/propositions.

The interactions of these knowledge-base partitions with other systems components
in FCRIS will be discussed in the following sub-sections.
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4.2. The data representation in FCRIS
The problem domain in FCRIS takes care of the interpretation of customer

attributes into the relevant product attributes and the determination of their corre-
sponding target values using fuzzy inference. Each attribute is represented by a
model variable which is in turn described by the relevant linguistic variables in
individual and sometimes overlapping fuzzy sets. The meaning of these fuzzy sets
can be enriched by appropriate hedges or quali® ers in order to accommodate the
possible ambiguity, vagueness, imprecision and inexactness commonly innate in the
semantics of the VoC. The representation of the basic constructs of FCRIS can be
described as follows.
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Figure 4. Architecture of the fuzzy customer requirement inference system (FCRIS).



4.2.1. The fuzzy space of customer attributes, V
The set of customer requirements (attributes) of a given product can be denoted

by an N-dimensional fuzzy vector X, such that

X = (X1,X2, . . . ,XN) in the fuzzy space of V ,
where V = V1 ´ V2 ´ ´´´ ´ VN , and `́ ’ is the Cartesian product operator, i.e. the
i th input model variable (customer attribute) Xi of a given product, for instance, the
`Top speed’ of a motor car, can be de® ned in the crisp set Vi (i = 1,2, . . . ,N) which
represents the corresponding universe of discourse, say from 100 km hr to 250 km/hr.

For each customer attribute Xi, a linguistic variable di (i = 1,2, . . . ,N) exists in
the set of all real numbers, R. It represents the relative weight of importance
(priority) of Xi in the set of customer attributes X. This priority may be speci® ed
directly by the customers themselves or established through analytical means, such
as the AHP technique employed in this research. Hence, for the input fuzzy vector X,
there exists a real vector d which represents the relative weights of importance for the
various customer attributes, such that d = (d1,d2, . . . ,dN) .

4.2.2. The space of product attributes, P
Similarly, the set of model variables representing the product/engineering attri-

butes can be denoted by an M-dimensional fuzzy vector Y , such that

Y = ( Y1, Y2, . . . , Y M) in the fuzzy space of P,
where P = P1 ´ P2 ´ ´´´ ´ PM, and `́ ’ is the Cartesian product operator, i.e. the ith
output model variable (product attributes) Y i, for instance the `Engine Power’ of a
motor car, can be de® ned in the crisp set Pi (i = 1,2, . . . , M) which covers the
corresponding universe of discourse, say from 50hp to 125 hp. The relative weights
of importance of the relevant product attributes can be represented by a real vector
w, such that w = (w1,w2, . . . ,wM).

4.2.3. The rule-base inter-relating the customer and product attributes
For a given product, the relationships between the set of customer attributes, X

and the set of product attributes, Y can be described by a number of fuzzy inference
rules/propositions in an ìf-then’ format. These propositions describe the relation-
ships between the linguistic variables of the customer attributes (input model
variables) and those of the product attributes (output model variables).

Example: Ìf the Top Speed of a motor car is rather fast and its Seating Capacity is
fairly large, then the required Engine Power would be reasonably high’ .

The general form of a typical fuzzy inference rule can be expressed as follows:

Ri: If (Xi1 is xi1, and Xi2 is Xi2, and . . . ,Xik is xik ) , then Y i is yi,
where xi1, xi2, . . . and xik are the linguistic variables corresponding to the input
model variables Xi1,Xi2, . . . and Xik respectively, while yi is the linguistic variable
applicable to the output model variables, Y i .

For each of the rules Ri (i = 1,2, . . . ,k) in the fuzzy rule base, there exists a
linguistic variable ri de® ned in the interval [0, 1]. It represents the c̀ertainty factor’
which denotes the con® dence of the product engineers or designers on the rule, Ri .
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4.3. The fuzzy inference process in FCRIS
The fuzzy inference process in FCRIS is the mechanism for projecting the output

target value for each speci® c product/engineering attribute by executing the fuzzy
rule base against an input set of customer attributes. The schematic representation
and the architecture of FCRIS can be shown in Figs. 4 and 5 respectively. The
implementation and application of the system take a number of logical stages as
explained below.

4.3.1. Fuzzi® cation of the customer attributes
In this stage, the customer attributes and their respective relative weight of

importance are fed into the system through a user interface. The data are then
transformed into fuzzy numbers or fuzzy sets with the knowledge held in K-CA.
During this transformation, speci® cations against individual customer attributes are
converted into the respective grades of certainty (degrees of membership) against the
relevant membership function of the corresponding input linguistic variables in the
fuzzy sets. These grades of certainty are regarded as the basic f̀acts’ of the fuzzy
inference process.

4.3.2. Evaluation/execution of the fuzzy rule-base
The fuzzy sets or membership functions established during the fuzzi® cation of

customer requirements are evaluated against the premise (conditions part) of the
fuzzy inference rules held in K-CA-PA. As a result, sub-conclusions are drawn as the
grade of certainty (truth) of a predicate in the rule exceeds a pre-set alpha-cut
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Figure 5. The schematic representation of FCRIS.



threshold, and the rule is then ® red. The procedures of fuzzy rule evaluation can be
explained as follows.

(1) Evaluating the premise of a rule. The grades of certainty of the predicates in the
premise of the rule Ri are given by:

The grade of certainty of `Xi1 is xi1 ’ is gi1;

The grade of certainty of `Xi2 is xi2 ’ is gi2;

The grade of certainty of `Xik is xik ’ is gik respectively; according to fuzzy set theory
(Zimmermann 1991), the overall grade of certainty of the premise will take the
minimum among the individual grades of certainty of the predicates. Hence, the
overall grade of certainty, gi in the premise of Ri can be denoted as:

gi = Min{gi1,gi2, . . . ,gik}
(2) Determining the grade of certainty of the consequent (conclusion part) of the rule.
For the rule Ri , the grade of certainty of its consequent will be the same as the overall
grade of certainty, gi of its premise. Hence, the grade of certainty of the consequent
`Y i is yi’ is also equal to gi.

4.3.3. Aggregation and defuzzi® cation of the output fuzzy regions
After rule evaluation, all the sub-conclusions relevant to each product attribute

are aggregated into a complete conclusion represented by an output fuzzy
region.

Example : The k sub-conclusions related to the product attribute, Y i drawn from the
rule evaluation exercise can be expressed together with their respective relative
weights of importance in the form of:

Y j is yj1 : gj1,wj1;

Y j is yj2 : gj2,wj2;

. . . ;

Y j is yj3 : gj3,wjk .

These sub-conclusions can be amalgamated to give a complete output con-
clusion `Y j is yÂj : wj ’ as shown in Fig. 6, where yÂ j is the aggregated and defuzzi® ed
output value of Y j , and wj is the relative weight of importance of the product
attribute Yj .

Each output fuzzy region will be defuzzi® ed according to the knowledge held in
K-PA to yield an expected output which represents the deterministic crisp target
value for the relevant product attribute. The choice of the methods of defuzzi® cation
depends on the nature of the analysis as well as the preference and emphasis adopted
by the decision makers. For demonstration purpose, the centroid method of defuz-
zi® cation (i.e. weighted average method of defuzzi® cation) is used here. With the
centroid method of defuzzi® cation, the expected output value yÂj for the product
attribute Yj can be worked out as follows:

Let Pj = [a,b] be the universe of discourse of the j th product attribute

24 R. Y. K. Fung et al.



represented by the output model variable Y j , hence a and b are the lower and upper
limits for the domain elements of Y j respectively. Thus, yÂj (the target value) for the
composite conclusion, `Y j is yÂj : w’ can be given by the centroid of the aggregate
output fuzzy region,

i.e. yÂj = ò
b

a
x¹ (x) dx/ ò

b

a
¹ (x) dx

where ¹ ( x) is the grade of certainty at the given domain point x (x Î [a,b])
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Figure 6. Aggregation of the subconclusions to yield a complete conclusion for a given
output model variable.

Figure 7. Aggregating and defuzzifying the subconclusions by the centroid method.



in the aggregated output fuzzy region for the model variable Y j as illustrated in
Fig. 7.

5. Case study

To help explain the working principles of FCRIS, the following example demon-
strates how a set of incoming customer requirements is fuzzi® ed and analysed using
the proposed fuzzy inference process in order to determine the design target value for
a given product attribute.

5.1. The scenario
The problem domain in this example is to determine the target value of the

product attribute on the `Engine Power’ required to satisfy speci® ed customer attri-
butes on the `Top Speed’ and the `Seating Capacity’ of a given model of motor car.
Hence, in this case N = 2 and M = 1.

5.1.1. Fuzzifying the customer and product attributes
The customer attribute `Top Speed’ is denoted by the input model variable X1. If

the minimum and maximum speed of the model of motor car concerned are 0 and
250 kilometres per hour (km/hr) respectively, the universe of discourse (V1) for X1

lies in the real interval [0, 250], i.e. V1 = [0,250]. For simplicity, the universe of
discourse is evenly subdivided into 6 sections (n = 6), therefore V1 contains 6 discrete
elements (real numbers) v1l , such that v1l = 50 * ( l - 1) ( l = 1,2,3,4,5,6) , i.e.
V1{0,50,100,150,200,250}.

If there are four linguistic variables x11 s̀low’ , x12 `moderate’ , x13 f̀ast’ and x14

èxtremely fast’ de® ned in the term set of the input model variable X1, the `Top
Speed’ . These linguistic variables can be described by the fuzzy sets A11 , A12 , A13

and A14 with their corresponding membership functions represented by the following
vectors:

A11 = (1.0,0.5,0.0,0.0,0.0,0.0) , A12 = (0.0,0.0,1.0,0.0,0.0,0.0)

A13 = (0.0,0.0,0.0,0.5,1.0,1.0) , A14 = (0.0,0.0,0.0,0.0,0.5,1.0) respectively,

as illustrated in Fig. 8.
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Similarly, another customer attribute `Seating Capacity’ can be denoted by the
model variable X2. If the minimum and maximum seating capacity of a car are two
and nine respectively, the universe of discourse (V2) of the model variable X2 lies in
the real interval [2, 9], i.e. V2 = [2,9]. The interval is evenly subdivided into n2

(n2 = 8) sections in the universe of discourse of V2 which contains 8 discrete
domain elements, v2l such that v2l = 1 + l (l = 1,2,3,4,5,6,7,8), i.e.
V2 = {2,3,4,5,6,7,8,9}.

If there are four linguistic variables x21 s̀mall’ , x22 `medium’, x23 l̀arge’ and x24

v̀ery large’ de® ned in the term set of the input model variable X2, the `Seating
Capacity’ , their corresponding fuzzy sets can be described by the following member-
ship vectors:

A21 = (1.0,0.5,0.0,0.0,0.0,0.0,0.0,0.0) , A22 = (0.0,0.5,1.0,0.5,0.0,0.0,0.0,0.0) ,
A23 = (0.0,0.0,0.0,0.5,1.0,0.5,0.0,0.0) , A24 = (0.0,0.0,0.0,0.0,0.0,0.0,0.5,1.0)

respectively as illustrated in Fig. 9.
On the other hand, the product attribute `Engine Power’ is denoted by the output

model variable Y1 with 0 and 125 horsepower (hp) as its minimum and maximum
limits respectively. Hence, the universe of discourse of Y1 lies in a real interval
[0, 125], i.e. P1 = [0,125].

If this interval is evenly divided into 6 sections (m = 6), thus P1 contains 6
discrete domain elements pl , such that pl = 25 * ( l - 1) (l = 1,2,3,4,5,6).
Therefore, P1 = {0,25,50,75,100,125}. Assuming there are four linguistic variables
y1 l̀ow’ , y2 `medium’ , y3 `high’ and y4 v̀ery high’ de® ned in the term set of the output
model variable Y1, the `Engine Power’ , the membership functions of their respective
fuzzy sets can be represented by the following vectors:

B1 = (1.0,0.5,0.0,0.0,0.0,0.0) , B2 = (0.0,0.0,1.0,0.0,0.0,0.0) ,
B3 = (0.0,0.0,0.0,0.5,1.0,1.0) , B4 = (0.0,0.0,0.0,0.0,0.5.1.0)

respectively as illustrated in Fig. 10.
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5.1.2. Representing the fuzzy rules
The fuzzy rule-base relevant to the problem domain can be evaluated as follows:

For Rule 1: Ìf the Top Speed is slow and the Seating Capacity is small, then the
Engine Power is low’ i.e. Ìf X1 = x11 and X2 = x21 , then Y1 = y1 ’ .

Hence, the predicates of this rule can thus be represented by a conditions matrix
C1, such that:

C1 = A11 ´ A21 = (12.0,0.5,0.0,0.0,0.0,0.0) ´ (1.0,0.5,0.0,0.0,0.0,0.0,0.0,0.0)

=

1.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0

0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

é
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i.e. the condition matrix C1 for Rule 1 can be obtained by taking the Cartesian
product of the membership functions of the related fuzzy sets in the premise of
the rule.

Similarly, the predicates of the i th fuzzy rule can be described by a condition
matrix Ci. Furthermore, a conditions vector Ci can be derived from the matrix Ci

with entries:

ci = cj1 j2 . . . jN

where i = [{[( j1 - 1) *n2 + ( j2 - 1)]*n3 + ( j3 - 1)}*n4 + ´´´+ ( jN- 1 - 1) ]*nN + jN,
" j1 = 1,2, . . . ,n1; j2 = 1,2, . . . ,n2; . . . ; jN = 1,2, . . . ,nN.

Hence, the above conditions matrix, Cl can be transformed into a conditions
vector, C1, i.e.
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C1 = (1.0,0.5,0.0,0.0,0.0,0.0,0.0,0.0,0.5,0.5,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

As a result, Rule 1 can be expressed in a rule matrix, Q1 such that:

Q1 = C1 ´ B1

= (1.0,0.5,0.0,0.0,0.0,0.0,0.0,0.0,0.5,0.5,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

´ (1.0,0.5,0.0,0.0,0.0,0.0)

=

1.0 0.5 0.0 0.0 0.0 0.0

0.5 0.5 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.5 0.5 0.0 0.0 0.0 0.0

0.5 0.5 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

: : : : : : : : : : : : : : : : : : : : : : : :

0.0 0.0 0.0 0.0 0.0 0.0

é
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This is a 48 ´ 6 matrix with its unspeci® ed entries :̀:::’ taking a value of zero (`0.0’).

For Rule 2: `If the Top Speed is moderate and the Seating Capacity is medium, then
the Engine Power is medium’,

i.e. Ìf X1 = x12 and X2 = x22, then Y1 = y2 ’

and its conditions matrix can be expressed as:

C2 = A12 ´ A22 = (0.0,0.0,1.0,0.0,0.0,0.0) ´ (0.0,0.5,1.0,0.5,0.0,0.0,0.0,0.0)

and the corresponding conditions vector becomes:
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C2 = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5,1.0,

0.5,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

Hence, the resulting rule matrix, Q2 can be given by:

Q2 = C2 ´ B2

= (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5,1.0,

0.5,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

Similarly, for Rule 3: Ìf the Seating Capacity is very large, then the Engine Power is
high’ , i.e. `̀ If X2 = x24, then Y1 = y3’ ’ .

Since the `Top Speed’ does not appear in the premise of this rule, its membership
function can be represented by a unit vector (1,1,1,1,1,1), so that the corresponding
conditions matrix can be given by:

C3 = (1,1,1,1,1,1) ´ A24 = (1.0,1.0,1.0,1.0,1.0,1.0)

´ (0.0,0.0,0.0,0.0,0.0,0.0,0.5,1.0)

and the corresponding conditions vector becomes:

C3 = (0.0,0.0,0.0,0.0,0.0,0.0,0.5,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5,1.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.5,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5,1.0,0.0,0.0,0.0,0.0,0.0,0.0,

0.5,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5,1.0)

Hence, the resulting rule matrix, Q3 can be given by:

Q3 = C3 ´ B3

= (0.0,0.0,0.0,0.0,0.0,0.0,0.5,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5,1.0,0.0,0.0,0.0,

0.0,0.0,0.0,0.5,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5,1.0,0.0,0.0,0.0,0.0,0.0,0.0,

0.5,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.5,1.0)

´ (0.0,0.0,0.0,0.5,1.0,1.0)

Assuming there are only three entries in the rule-base relevant to the current problem
domain, their matrices can be combined into a single consolidated rule matrix
through a series of fuzzy OR `̀ ~ ’ ’ operations, i.e. Q = r1*Q1 ~ r2*Q2 ~ r3*Q3, where
ri represents the certainty factor for the fuzzy proposition Ri , (i = 1,2,3).

Assuming all the ri = 1 in this case, hence the consolidated rule matrix
becomes:
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Q = Q1 + Q2 + Q3

=

1.0 0.5 0.0 0.0 0.0 0.0
0.5 0.5 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.5 0.5 0.5
0.0 0.0 0.0 0.5 1.0 1.0
0.5 0.5 0.0 0.0 0.0 0.0
0.5 0.5 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.5 0.5 0.5
0.0 0.0 0.0 0.5 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.5 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.5 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.5 0.5 0.5
0.0 0.0 0.0 0.5 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.5 0.5 0.5
0.0 0.0 0.0 0.5 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.5 0.5 0.5
0.0 0.0 0.0 0.5 1.0 1.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.5 0.5 0.5
0.0 0.0 0.0 0.5 1.0 1.0
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5.1.3. Processing speci® c customer attributes
Now, assuming the product engineers have to re-design an engine for a model of

motor car in response to a speci® c set of customer attributes on `Top Speed’ X1 and
`Seating Capacity’ X2, they want to know the minimum output power that the engine
has to deliver in order to meet these requirements.

The relevant linguistic variables for X1 and X2 are fuzzi® ed and represented by
the membership vectors,

AÂ1 = (0.0,0.1,0.8,0.2,0.0,0.0)

and

AÂ2 = (0.1,0.6,0.4,0.2,0.0,0.0,0.0,0.0) respectively.

Hence, the conditions matrix representing these speci® c customer speci® cations can
be expressed as:

CÂ = AÂ1 ´ AÂ2 = (0.0,0.1,0.8,0.2,0.0,0.0) ´ (0.1,0.6,0.4,0.2,0.0,0.0,0.0,0.0)

=

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0

0.1 0.6 0.4 0.2 0.0 0.0 0.0 0.0

0.1 0.2 0.2 0.2 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

é
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and, the Conditions Vector becomes

C’ = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.1,0.1,0.1,0.1,0.0,0.0,0.0,0.0,0.1,0.6,0.4,
0.2,0.0,0.0,0.0,0.0,0.1,0.2,0.2,0.2,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

5.1.4. Evaluating the fuzzy rule base
Then, the set of customer attributes represented by the conditions vector, CÂ is

submitted to rule evaluation against the consolidated rule matrix, Q established in
§ 5.1.2. The corresponding output membership vector, BÂ can be worked out through
max± min compositional inference on the condition vector and the consolidated rule
matrix as follows:

BÂ = CÂ Ê Q = (0.1,0.1,0.5,0.0,0.0,0.0) .

where Ề ’ is the max± min compositional operation; it works in a way similar to
ordinary matrix multiplications, except that the addition operation `+ ’ is replaced
by the maximization operation ~̀ ’ , and the multiplication operation `*’ is replaced
by the minimization operation `̂ ’ .

This vector represents the membership function of the output fuzzy region after
aggregating the sub-conclusions for the product attribute Y1, the `Engine Power’ in
the universe of discourse P1.

32 R. Y. K. Fung et al.



5.1.5. Defuzzifying the output fuzzy region
The resulting target value yÂ for the model variable Y1 can be determined by

defuzzifying the singleton output fuzzy region using the centroid method, i.e.

yÂ = (0.1 *0 + 0.1 *25 + 0.5 *50 + 0.0 *75 + 0.0 *100 + 0.0 *125)

/(0.1 + 0.1 + 0.5 + 0.0 + 0.0 + 0.0)

= 27.5 /0.7

= 39.3hp (horsepower)

Hence, the minimum `Engine Power’ required to satisfy the set of customer attributes
has been worked out to be 39.3 horsepower as illustrated in Fig. 11.

This case study demonstrates how the fuzzy inference process in the proposed
hybrid model can be used to determine the design target for minimum power that the
engine has to deliver in order to ful® l the speci® ed customer requirements on Top
Speed and Seating Capacity of a certain model of motor car using matrix computa-
tions. More complex problems can be processed in a similar manner.

Since de® nitive formulae for coping with fuzzy VoC are practically unavailable,
without FCRIS the design engineers would have to resort to time-consuming pro-
cedures probably by rule of thumb to estimate the design targets which are liable to
subjectivity and inconsistency.

6. Conclusions and further work

The approach proposed in this paper can decode the VoC more e� ectively
through extending the basic applications of QFD and HoQ quantitatively towards
a new horizon of determining the technical design targets with the help of arti® cial
intelligence. The principles and applications of the intelligent hybrid model for
customer requirements analysis and product design targets determination have
been explained and discussed throughout this paper. The novel ideas of structuring
the Focused HoQ with the use of AHP and the A� nity Diagram for particular
categories of product attributes, and implementing the fuzzy inference process
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Figure 11. Defuzzifying the singleton output region to yield the minimum engine power
required.



using matrix computations, have been expounded with the help of a number of
examples and a practical case study. The proposed intelligent hybrid model is cap-
able of e� ectively analysing and processing speci® c customer requirements to give
quantitative design speci® cations which are essential for guiding the downstream
activities in product planning and manufacturing. As a result, the fuzzy front end
in the product design cycle can be compressed, hence the overall time to market can
be substantially shortened.

Putting the research into future perspective, certain related areas can be further
polished. They include automating the data manipulations in HoQ’s, reducing the
inter-dependency between the attributes, improving the method of knowledge repre-
sentation and enhancing the user interfaces in FCRIS. With these additional e� orts,
the proposed hybrid model can be further strengthened to become an essential
construct in the architecture of market-focused manufacturing.
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