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Forecasting errors and the value of information sharing in a supply chain

XIANDE ZHAOy* and JINXING XIEz

The paper investigates the impact of forecasting errors and information sharing
on the performance of a supply chain. It also examines the impact of forecasting
errors on the value of information sharing between retailers and a supplier.
Analyses of the simulation outputs show that while information sharing can
bring tremendous bene®ts to the supplier and the entire supply chain, it hurts
the retailers under most conditions. Demand pattern and forecasting error dis-
tributions faced by the retailers signi®cantly in¯uence the magnitudes of the cost
savings as a result of information sharing. The expected bias in forecast errors has
a much more signi®cant impact on supply chain performance and the value of
information sharing than the standard deviation of forecasting errors and its
pattern of deterioration over time. A slight positive bias in the retailer’s forecast
can actually increase the bene®t of sharing information for the supplier and the
entire supply chain. However, it can also increase the cost for retailers. The
demand pattern faced by retailers also signi®cantly in¯uences the impact of fore-
casting accuracy on the value of the information sharing. These ®ndings will
motivate companies to share information, and will help to design incentive
schemes to encourage information-sharing and justify investment in information-
sharing projects. The ®ndings can also be used to minimize the negative impact of
forecasting errors on supply chain performance.

1. Introduction
Global supply chain management (GSCM) has become a very popular topic in

recent years because it enables business corporations to improve customer services
and at the same time reduce costs. GSCM has become one of the most popular
approaches for enhancing the competitiveness of business enterprises in today’s
highly competitive environment, having regard to the coordination of products
and information ¯ows among suppliers, manufacturers , distributors, retailers and
customers. In order that trading partners can successfully coordinate various activ-
ities in the supply chain, they have to share information with each other.

Modern information technology has provided a means to enable the sharing of
information among di� erent parties in a supply chain. However, there are often costs
involved in setting up the appropriate system or channel. Many companies are
reluctant to share information with their trading partners because they are unable
to see how doing so would bene®t them. Some even fear that their trading partners
will take unfair advantages over them. In order for them to share information, it is
necessary that they see how much they can gain by doing so. Estimating the magni-
tude of the bene®ts of sharing information to the di� erent parties may help these
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parties design an incentive system that can have the e� ect of motivating their trading
partners to share information. For these reasons, there is a real need to evaluate the
magnitude of cost savings that can be achieved through information sharing.

Another factor that can signi®cantly in¯uence supply chain performance is fore-
casting accuracy. When retailers forecast demand using di� erent models, the accu-
racy of the forecasts can di� er dramatically depending on the market environment
and how much e� ort the retailers put into their forecasting process. Retailer fore-
casting accuracy can signi®cantly in¯uence the quality of the replenishment decisions
that they make, which, in turn, will in¯uence the production and transportation
decisions made by the supplier and, consequently, the performance of the entire
supply chain. The accuracy of their forecasts can also in¯uence the bene®ts of shar-
ing information. Intuitively, as forecasting accuracy deteriorates as retailers forecast
further into the future, the forecasts and the corresponding inventory decisions made
by the retailers also become less reliable. The value of the information that retailers
share with the supplier can, therefore, also decrease.

The purpose of this paper is to investigate the impact of forecasting error distri-
bution faced by retailers with regard to the performance of a supply chain and the
magnitude of the cost savings that can be achieved through information sharing. It
will also examine how demand patterns faced by retailers in¯uence the impact of
forecasting error distribution on the value of information. The ®ndings will help
companies understand how great the bene®ts of sharing information under di� erent
conditions can be and how forecasting accuracy can in¯uence the bene®ts of sharing
information. Armed with knowledge of this kind, companies will be equipped to
make more e� ective decisions when selecting information-sharing methods and when
attempting to minimize the negative impact of demand uncertainty on supply chain
performance.

The following sections will present a review of the related literature, which will be
followed by a discussion of the simulation procedure, the experimental design and
the research hypotheses. Subsequently, the results of the statistical analyses will be
presented. The conclusion will summarize the major ®ndings and contributions and
will indicate some possible directions for future research.

2. Literature review
Many researchers have investigated issues relating to the design and management

of supply chains. Among these demand distortions along a supply chain and the
impact they have on the performance of a supply chain are a frequent topic of
research. Lee et al. (1997) investigated the demand variability ampli®cation along
a supply chain from the retailers to the distributors. They called this ampli®cation
e� ect the bullwhip e� ect and identi®ed four major causes. They proved mathemat-
ically that demand variation was ampli®ed when orders were passed from retailers to
the supplier. Chen et al. (2000a) quanti®ed the bullwhip e� ect using an analytical
model. They demonstrated that the variance of orders was always higher than the
variance of demand, and that the magnitude of the variance was signi®cantly
in¯uenced by the number of observations (N) used in the moving average model,
the lead-time between the retailer and the manufacturer (L) and the correlation
parameter (») in the demand function. Chen et al. (2000b) examined the impact of
exponential smoothing forecasts on the bullwhip e� ect and compared the results
obtained using the exponential smoothing forecasting model with the results
obtained using the moving average model. They found that reducing ordering
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lead-times and using more demand information in constructing the demand forecast
could decrease the bullwhip e� ect. They also found that negatively correlated
demand could lead to a greater increase in order variability than could positively
correlated demand, and that a retailer forecasting a demand with a linear trend
would receive more variable orders than a retailer forecasting an i.i.d. demand.

Most existing studies on the bullwhip e� ect focus on distortion in demand infor-
mation as one proceeds upstream in the supply chain. Although these studies help us
to gain insights into variations and distortions in order quantities, they do not allow
for evaluation of the impact of the bullwhip e� ect on system performance. Metters
(1997) studied the impact of the bullwhip e� ect on a company’s pro®tability by
establishing an empirical lower bound on the excessive cost as a result of the bull-
whip e� ect. He found that the business environment of the ®rm could signi®cantly
in¯uence the ®nancial impact of bullwhip e� ect on the ®rm. He demonstrated that
eliminating the bullwhip e� ect could increase product pro®tability by 10±30% under
some conditions.

Although Metters demonstrated the ®nancial signi®cance of the bullwhip e� ect
for a ®rm’s performance, it did not consider the interaction between the retailer’s
inventory replenishment decisions and the supplier’s production decisions. This
study did not include the retailer; it considered only one supplier with a ®xed pro-
duction capacity and a demand with di� erent variations. Demand was not based on
the retailer’s orders and ordering costs, transportation costs and production set-up
costs were not considered.

Our review of the literature indicates that most studies in the supply-chain area
made many assumptions in an attempt to solve related problems analytically. While
these studies help practitioners understand the basic phenomena, they do not pro-
vide guidelines that are su� cient to help practising managers improve system per-
formance. Computer simulation has been used to study the more practical issues in
supply chain management. Using a computer simulation model, Johnson et al.
(1999) examined the impact of vendor managed inventory (VMI) in less-than-ideal
environments Ð those with high demand volatility, partial adoption of VMI, and
limited manufacturing capacity. They found that the operational bene®ts associated
with VMI to be very compelling. They also showed that the VMI approach greatly
reduced inventories for all participants in the supply chain without compromising
service. However, they implemented VMI by reducing ordering frequency from the
retailers to the supplier and did not measure the bene®ts in term of cost.

Bhaskaran (1998) did a simulation study at General Motors Corporation and
found that the Kanban systems that do not generate meaningful forecasts for sup-
pliers can cause considerable degradation of schedule stability. She showed three
typical pro®les of the rate at which forecast deviation accelerates as forecasts go
further into the future: constant rate, decreasing rate and increasing rate.

Although very few studies have examined the impact of forecasting errors on the
performance of a supply chain, and while simulation has not been used much in
supply chain studies, a signi®cant number of simulation studies have been performed
to examine the impact of forecasting errors on the performance of material require-
ments planning (MRP) systems. Biggs and Campion (1982) ®rst investigated the
impact of forecasting errors bias on MRP system performance and showed bias of
forecasting errors to have a signi®cant impact on the performance of a production
and inventory system. The study demonstrated that over-forecasting could reduce
the cost of MRP systems.
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Lee and Adam (1986) investigated the impact of the bias and standard deviation
of forecasting errors on the performance of multiple-stage MRP systems and the

relative performance of lot-sizing rules. They found that both bias and the standard

deviation of the forecasting errors had a signi®cant impact upon MRP system per-

formance. However, the impact of forecasting errors upon the system’s performance

was dependent on the MRP structure. It was also found that moderate positive bias

(10±30%) reduced the total cost of the MRP systems studied. Lee et al. (1987)

studied the relationship between the total cost of MRP systems and four traditional
forecasting error measures, i.e. bias, standard deviation, mean absolute deviation

(MAD) and mean square errors (MSE). They found that bias outperformed the

other three forecasting error measures in explaining total cost variations for MRP

systems with a bill of material level of six using any lot-sizing rules. MSE and MAD

explained a high proportion of total cost variations for the MRP systems with a bill

of material level equal to three using certain lot-sizing rules. In contrast, a much

lower standard deviation explained variation in total cost for any MRP structures or
lot-sizing rules.

Ritzman and King (1993) studied the relative signi®cance of forecasting errors in

multistage manufacturing. They found that the mean forecasting error (bias) had a

signi®cantly higher impact on inventory level and past-due demand than forecasting

error variability. They also found that many other factors have a much greater

impact on both inventory level and past-due demand than the forecasting error

measures. These factors include lot-sizing rules, percentage of special products and
bu� er stock levels.

Zhao and Lee (1993) studied the impact of master production schedule freezing

parameters on the performance of MRP systems using double exponential smooth-

ing (DES) and Winters’ model (WIN). They found that although Winters’ model

resulted in lower bias and standard deviation of forecasting errors, it resulted in

higher total cost and schedule instability in the MRP operating settings that they

used. Zhao et al. (1995) studied the impact of forecasting models on the performance
of lot-sizing rules and selection of MPS freezing parameters using the same two

forecasting models. They found that using di� erent forecasting models resulted in

di� erent bias and standard deviations in forecasting errors. At the same time, the

forecasting errors often have a signi®cant impact on the relative performance of the

lot-sizing rules and the MPS freezing parameters.

The review of the literature in the area of forecasting error impact on the

performance of material requirements planning systems indicates that forecasting
accuracy can signi®cantly in¯uence the performance of a production and inven-

tory system. Understanding how forecasting accuracy in¯uences system perform-

ance can help practitioners minimize the negative impact of forecasting errors. By

the same token, understanding how forecasting errors in¯uence the performance

of supply chain systems can also help supply chain managers improve supply

chain performance. The present study builds a comprehensive computer simula-
tion model to capture data on information sharing between the retailers and

suppliers in a supply chain under di� erent demand patterns and forecasting

error distributions. The analyses of the simulation output allow us to gain an

understanding as to how forecasting error distributions in¯uence the supply chain

performance and the bene®ts of information sharing for both the supplier and the

retailers.
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3. Simulation model
We used a simulation model here rather than analytical approaches because we

wanted to capture the interactions between the supplier’s decisions and the retailers’

decisions under an environment with capacity constraints and demand uncertainty.

The simulated supply chain consists of one supplier and four retailers. The supplier is

assumed to be a manufacturer with a ®xed production capacity to produce a single

product for the retailers. The lead-time needed to produce the product is assumed to

be zero if the required production capacity is available. Production will be delayed
until the next period if there is not su� cient capacity to produce the product in the

current period.

All retailers are assumed to have identical demand distributions with the same

average demand of 1000 units per period for each retailer. The retailers make

demand forecasts for future periods in their planning horizon and make their inven-

tory replenishment decisions using the economic ordering quantity rule based on

their demand forecasts.
Retailer planning horizons are eight times their natural ordering cycle, and

replanning periodicity is one period. For example, if the natural ordering cycle for

the retailer is four periods, the retailer will forecast a demand for 32 periods into the

future and plan for replenishment activities for the following 32 periods in each

replanning cycle. Once they have made their inventory replenishment decisions,

they will place the ®rst order with the supplier. Depending on the level of informa-

tion sharing between the supplier and the retailers, the supplier may receive addi-
tional information from the retailers. In the case of no information sharing (NIS),

retailers only send the ®rst order to the supplier and share no other information. In

the case of demand information sharing (DIS), the retailers inform the supplier of

their projected future net requirements in their planning horizon based on current

inventory and future forecasts. In the case of planned order information sharing

(OIS), the retailers also inform the supplier of its future order plans based on current

inventory, future forecast and rules for determining order quantity.
The supplier receives the ®rst orders in the retailers’ planning horizons and the

information shared by the retailers, then makes production decisions using a capa-

citated lot-sizing rule as proposed by Chung and Lin (1988). In this study, it is

assumed that the capacity absorption for each unit of product is equal to one.

That is to say, one unit of resource is required by the supplier to produce exactly

one unit of product. This assumption will not cause the generality of the conclusion

to be lost as demand for each product can always be measured by the units of the
resource needed to produce the product. Available capacity is assumed to be at a

constant level during the entire simulation horizon and the average capacity utiliza-

tion is set at 80%.

After the current period’s production ®nishes at the end of each period, the

supplier makes delivery decisions based on available inventory and customer

orders. The supplier ful®ls each retailer’s order (plus backorders if any) if on-hand
inventory is su� cient to ful®l all retailers’ orders and backorders. If on-hand inven-

tory is insu� cient, each retailer will be allocated a quota proportional to its order

(plus backorder if any) and any shortages will become backorders. The shipment will

arrive at the retailers via truck after the transportation lead-time. The truckload is

assumed to be large enough so that a single truck can complete a shipment to any

retailer in any period.
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The party to whom transportation costs will be charged depends on whether
there is an order placed by the retailer in that period. When there is, the retailer
will pay the transportation costs of the current period’s shipment regardless of
whether a proportion of the shipment is used to satisfy the backorder of previous

orders. However, when there is no order placed by the retailer in that period, the
shipment to the retailer is used only to satisfy the backorders of previous orders, and
the supplier will pick up the bill for making the shipment.

The transportation costs per truck from the supplier to the retailers as used in

this study are adopted from a real case. Whenever a retailer places an order to the
supplier, a ®xed order processing cost ($100 per order in this study) is incurred in
addition to the transportation costs. Therefore, the retailer’s ordering cost as used in
making inventory replenishment decisions is the sum of the transportation costs and

the ®xed-order processing costs. The supplier’s production set-up costs are assumed
to be $1000 per set-up. The inventory holding costs (h) per unit per day for the
supplier and retailers are designed in such a way that the natural ordering cycles for
the retailers and the supplier cover 4 days. This approach of designing the cost

structure has been used in previous studies (Zhao and Lee 1993, Zhao et al. 1995).
The cost parameters used in this study are within the range of parameters used by
Ebert and Lee (1995).

When the supplier is unable to ful®l a retailer’s orders on time or when a retailer

is unable to meet demand on time, a backorder cost will be incurred. Assessment of
the backorder cost is a little di� cult. The backorder cost should indicate the loss of
goodwill and the potential future loss of pro®t as a result of customer dissatisfaction

caused by the backorder. In this study, backorder costs per unit per day for both the
supplier and the retailers are 10 times their corresponding unit inventory holding
cost per day. The cost structures (order processing costs, transportation costs, inven-
tory costs and backorder costs for the retailers; set-up costs, inventory costs and

backorder costs for the supplier) are shown in table 1. The cost parameters are
within the range of the parameters used in Ebert and Lee (1995).

The above process is repeated until ordering, production and delivery decisions
are developed for all 200 periods. After the entire simulation run is completed, the

inventory costs, order processing or set-up costs, backorder costs, transportation
costs and total cost will be calculated for the retailers and the supplier. The aggregate
total cost for the entire supply chain will also be calculated and used as the perform-
ance measure of the supply chain.
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Supplier/retailer Supplier Retailer 1 Retailer 2 Retailer 3 Retailer 4

Order processing costs ($/order) 1000 100 100 100 100
(transportation costs excluded) (set-up costs)
Transportation costs ($/truck) N/A 450 255 331 553
Natural ordering cycle (periods) 4 4 4 4 4
Backorder costs ($/unit/period) 10 10 10 10 10
(in terms of inventory carrying
cost per unit per period1)

1Inventory holding costs ($/unit/period) can be calculated by using the EOQ formula with the
natural ordering cycle and the average demand.

N/A, not applicable.

Table 1. Cost structure with one supplier and four retailers.



To minimize the termination e� ect, the length of the simulation run is selected to
be 200 periods, and the results from the ®rst 50 periods and the last 10 periods are

excluded from performance measure calculation. Therefore, the ®nal performance

measures are calculated based on 140 simulation periods (periods 50 to 189).

Furthermore, to avoid possible backorders for the retailers during the beginning

periods due to transportation lead-time, su� cient initial inventory is assumed for

each retailer. In this study, we set the initial inventory for the ith retailer at

…1 ‡ i† ¤ 1000 (i ˆ 1±4). The second part of the initial inventory (i ¤ 1000 units) is
used to give the di� erent retailers di� erent initial inventories.

4. Experimental design
4.1. Independent variables

The independent variables and the values used in the simulation experiment are
shown in table 2 and are described below.

4.1.1. Retailer demand pattern (DP)

To investigate how demand pattern in¯uences the value of information sharing
and the impact of forecasting errors on the value of information sharing, the actual

demand patterns faced by the retailers are varied and generated using the following
formula:

Demandt ˆ base ‡ slope £ t ‡ season £ sin
2º

Season Cycle
£ t

³ ´
‡ noise £ snormal…†;

…1†

where Demandt is the demand in period t (t ˆ 0; 1; 2; . . . ; 199), snormal…† is a stan-

dard normal random number generator and SeasonCycle ˆ 7 in this study. The

other parameters (base, slope, season, noise) are characteristic parameters for
demand generators. The base is selected in such a way to ensure that average

demand for the 140 simulation periods (periods 50 to 189) is 1000. To avoid the
possibility of generating negative demand, we restricted the standard normal random

variable to values from the range of ¡3:0 to ‡3:0 only. In this study, we used three

di� erent demand patterns representing demand with seasonality but no trend (SEA),

demand with an increasing trend and seasonality (SIT) and demand with a decreas-

ing trend and seasonality (SDT). The demand characteristic parameters are shown in
table 3.
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Variable Number of
number Variable name Label levels Values

1 retailer’s demand patterns DP 3 SEA, SIT, SDT
2 forecasting error bias EB 4 50,0,50,100
3 forecasting error deviation ED 3 0,50,200
4 increase rate IR 3 LIN, CVX, CCV
5 information sharing IS 3 NIS, DIS, OIS

Table 2. Summary of the independent variables.



4.1.2. Forecasting error distribution

To examine the impact of forecasting error distribution on system performance

and the value of information sharing, it is assumed that retailer’s forecasting errors

follow normal distributions. The forecasts that the retailers make will be equal to the

demand plus the forecasting errors. This approach has been used in a number of
studies (Biggs and Campion 1982, Lin and Krajewski 1992, Lee and Adam 1996,

Bhaskaran 1998). The forecasting errors distributions are characterized by three

parameters: the mean (bias) of forecasting errors (EB), the initial standard deviation

(ED) that measures forecast variability and the rate of increase (IR) of forecast

deviation over time. Hence, the demand forecast made at period t0 for a period t

…t ¶ t0† is generated according to the following formula:

Forcastt ˆ Demandt ‡ EB ‡ ED £ IR…t ¡ t0 ‡ 1† £ snormal…†; …2†

where Demandt is the demand in period t …t ˆ 0; 1; 2; . . . ; 199† as given in equation

(1) and snormal…† is a standard normal random number generator. EB is set at ¡50,
0, ‡50, ‡100, while ED is set at 0, 50, 200. Borrowing the idea from Bhaskaran

(1998) discussed above, we selected three increase rate patterns (IR) for forecast

deviation: linear (LIN, a constant rate), concave (CCV, an increasing rate) and

convex (CVX, a decreasing rate). The three di� erent patterns of change are demon-

strated in ®gure 1.
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Demand generator Base Slope Season Noise

SEA 1000.0 0 200 100
SIT 761.0 2 200 100
SDT 1239.0 2 200 100

Table 3. Demand patterns.
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Figure 1. Patterns of increasing rate of forecast deviation.



4.1.3. Information sharing (IS)
Information sharing refers to the degree to which the retailers share demand or

order information with the supplier. Three cases will be examined: no information
sharing (NIS), demand information sharing (DIS) and order information sharing
(OIS). The way that the information is shared and how the supplier uses the infor-
mation in each case has been discussed above.

4.2. Dependent variables
The following criteria are used as the dependent variables of the experimental

design.

. Total cost for retailers (TCR), which is the sum of the ordering costs (including
transportation costs), inventory carrying costs and backorder costs.

. Total cost for the supplier (TCS), which is the sum of the set-up costs, trans-
portation costs (for backorder deliveries), inventory carrying costs and the
backorder costs.

. Total cost for the entire supply chain (TC), which is the sum of the TCR and
TCS, minus the backorder costs paid from the supplier to the retailers. We
make this subtraction because TC is only an internal cost within the supply
chain and is not actually incurred.

5. Research hypotheses
The output from the simulation experiments will be analysed to test the following

research hypotheses.

Hypothesis 1: Forecasting error distribution will signi®cantly in¯uence supply
chain performance. Higher forecasting errors (EB or ED) will result in a worse
performance.

Hypothesis 2: Forecasting error distribution will signi®cantly in¯uence the
value of information sharing. Higher forecasting errors (EB or ED) will reduce
the bene®ts of information sharing.

Hypothesis 3: Demand pattern faced by the retailer will signi®cantly in¯uence
the impact of forecasting error distribution on the values of information sharing.
When the demand has either an increasing or a decreasing trend, the forecasting
error distribution will have a greater impact on supply chain performance and the
value of information sharing.

6. Results
For each combination of the independent variables, the simulation ran with 20

replications. This number of replications was selected to provide 95% con®dence
that the true mean would be within 1% of the estimated mean. The output from the
simulation experiments was analysed using the SAS analysis of variance (ANOVA)
procedure and Duncan’s test. Residual analyses were performed, and suggested
transformations were made to the dependent variables using SAS. Selected
ANOVA results are presented in table 4. Results of the Duncan’s test are presented
in table 5. These results, discussed around the research hypotheses, are presented
below.
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6.1. Impact of forecasting error distribution (EB, ED and IR) on the performance
of the supply chain

Table 4 shows that at the 5% signi®cance level, both the expected bias (EB) and
initial standard deviation (ED) parameters of the forecasting errors distribution have
signi®cant e� ects on all three dependent variables. The interaction e� ect between EB
and ED is also signi®cant according to all three dependent variables. Although the
increase rate (IR) is also statistically signi®cant, analyses show that its impact on
system performance and the value of information sharing is much lower than for the
other two forecasting error parameters. Therefore, we will not present our IR results.

The main e� ects of the EB and ED parameters are shown in table 5, where we
can see that a higher standard deviation always results in a higher total cost for the
supplier, the retailers and the entire supply chain. Therefore, reducing the variability
in the forecasting errors will help to improve the performance of all parties in the
supply chain. However, when the impact of expected bias (EB) is examined, the
situation is somewhat di� erent. Generally speaking, an unbiased forecast (EB ˆ 0)
will result in the lowest total cost for the supplier, the retailer and the entire supply
chain. When there is a bias in the forecast, the costs for the retailers, suppliers and
the entire supply chain all go up. A negative bias (EB ˆ ¡50) results in the next
lowest costs for the retailers and the entire supply chain, followed by a positive bias
of 50. A positive bias of 100 results in the highest total supply chain cost and total
cost for the supplier. This result indicates that a higher positive bias in the forecast
will worsen the performance of the supply chain, and increase the costs for retailers.
When a negative bias exists in the forecast, the forecast is lower than the actual
demand. The retailers will use the initial inventory to meet the demand. Therefore,
the initial inventory will be reduced, which will result in a lower inventory carrying
cost for retailers. This is why a negative bias of 50 produces slightly lower costs for
retailers (TCR) and the entire supply chain (TC) than a positive bias of 50.

For the supplier, a positive bias of 50 or 100 results in lower cost than a negative
bias of 50. This is because when retailers over-forecast demand, they place larger
orders with the supplier, who will try to produce more using the capacity available.
Over-production in certain periods reduces the probability of shortages due to insuf-
®cient capacity, and thus reduces the backorder costs for the supplier.

To examine the e� ect of the interactions between the bias and standard deviation
(EB*ED), relative total costs (RTC) under di� erent combinations of ED and EB are
shown in ®gure 2, which also shows the cost savings (positive) or increase (negative)
for ED ˆ 50 and 200, respectively, relative to ED ˆ 0 by means of a histogram.
From ®gure 2, one can see that when EB ˆ ¡50, 0 or ‡50, a higher standard devi-
ation will result in a higher total cost, as the higher variation in the forecast will
produce higher backorder costs. However, when the bias ˆ 100 the reverse is true, as
the higher positive bias will lead to additional bu� er stock in the supply chain, and
thus backorder costs become less signi®cant than inventory carrying costs. Analyses
of the component costs for the supplier and retailers also show that a higher stan-
dard deviation (ED) leads to lower inventory carrying costs for the supplier, due to
the higher lumpiness in the demand forecast. When the expected bias (EB) is 100, the
inventory holding cost is the dominant component in the total cost, and thus a
higher ED produces better performance.

Under all three levels of ED, total costs under a negative bias of ¡50 are larger
than those under an unbiased forecast (EB ˆ 0). When the bias is increased from 0 to
‡50, and then to ‡100, the total cost increases, but the magnitude of the increase in
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total cost is much lower when ED ˆ 200 than the corresponding increases in total

cost when ED ˆ 0 or 50. This smaller increase in total cost is a result of an increased

need for safety stock when ED is higher.

Figures 3 and 4 show the relative total costs for the supplier (RTCS) and retailers

(RTCR) respectively. From these two ®gures, we can see that when ED ˆ 0 or 50,

total costs for both the supplier and retailers ®rst decreases as EB increases from ¡50
to 0. They then increase when the bias increases further in the positive direction.

When ED ˆ 200, however, total cost for the supplier consistently decreases as EB

increases from 0 to 100. Total cost for the retailers, on the other hand, increases as
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the bias increases from ¡50 to ‡100, and the rate of increase becomes higher when
the bias grows higher.

The di� erences in the relationship between TCS, TCR and EB under di� erent

standard deviations can be explained by the need for a higher level of safety

stock to deal with the demand uncertainty in the supply chain. As ED increases,

the forecast gains a higher level of uncertainty, which leads to a higher prob-

ability of stock-outs. When EB increases, the average forecast is adjusted upwards

and thus introduces bu� er stock into the system. This bu� er stock helps to
protect against the demand uncertainty in the supply chain. Furthermore, a

higher positive bias leads to larger or earlier orders and thus helps to improve

capacity utilization of the supplier. Therefore, the backorder cost for the supplier

is substantially reduced. This is why the relative total cost for the supplier

decreases as the bias increases under high standard deviation of the forecast

error (ED ˆ 200). For the retailers, however, the decrease in back order cost is

less signi®cant because of the initial inventory and the bu� ering e� ect of
ordering for four periods each time (the natural ordering cycle is 4 days). The

increase in inventory carrying cost as a result of the increase in bias becomes

more dominant. Therefore, the relative total costs for the retailers increase as bias

increases.

When the cost savings or increases of ED ˆ 50 and 200 relative to ED ˆ 0 in

®gures 3 and 4 were examined under di� erent levels of expected bias (EB), we found

that EB signi®cantly in¯uences the impact of ED on supplier and retailer costs.
When EB ˆ 0, the higher forecast uncertainty (ED ˆ 50 or 200) results in much

higher cost increases relative to no forecast uncertainty (ED ˆ 0) for both the sup-

plier and the retailers. When there is a positive bias of 100, higher uncertainty in the

forecast can even help to reduce the total costs for both the supplier and retailers,

due to the decreased inventory holding cost that results from the higher lumpiness in

the demand forecast when the ED is higher.
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Overall, the results presented above support the ®rst hypothesis. The bias, the
standard deviation of the forecasting errors, and their interactions, all signi®cantly
in¯uence supply chain performance. When the bias is low (EB ˆ ¡50, 0 and 50), a
higher standard deviation in the error always results in a higher cost for both the
supplier and the retailer. However, when the bias is high (EB ˆ 100), a higher
standard deviation can even result in slightly better performance of the supply
chain. This result indicates that a positive bias can be used in the forecast as a
bu� er to protect against uncertainty and thus reduce the negative impact of that
uncertainty. The positive bias is more e� ective in reducing the supplier’s total cost
than the retailers’ cost. The result also shows that the pattern of increase in the
standard deviation does not signi®cantly in¯uence the performance of the supply
chain.

6.2. Main e� ect of information sharing (IS) on supply chain performance
The Duncan’s ranking result in table 5 shows that the e� ect of information

sharing di� ers signi®cantly for the supplier and the retailers. While the sharing of
order information (OIS) always produces lower total costs for the retailers than
demand information sharing (DIS), and DIS, in turn, also produces lower costs
for the supplier than no information sharing (NIS), the reverse is true for the retai-
lers. This result indicates that information sharing only bene®ts the supplier but not
the retailers. In terms of the total cost of the entire supply chain, OIS results in a
better-cost performance than DIS, which performs better than NIS. Since the sup-
plier will make better use of its capacity and improve its on time delivery of goods
when retailers share information, information sharing helps the supplier to signi®-
cantly reduce backorder cost. Furthermore, the supplier will be able to reduce the
chances to pay for the transportation of late orders. However, when the supplier
delivers more goods to retailers on time, retailers will carry more inventories and
thus increase the inventory carrying cost. This e� ect dominates the decrease in the
backorder cost as a result of the on-time delivery performance by the supplier, and
thus the total cost for retailers increases when information is shared with the sup-
plier.

From the information in table 5, we can also examine the magnitudes of cost
savings or increases for the supplier, the retailers, and the entire supply chain, as a
result of information sharing. The cost savings realised through OIS are 69.9 and
9.4% for the supplier and the entire supply chain respectively. DIS provides cost
savings of 41.7 and 6.5% for the supplier and the entire supply chain respectively.
These ®gures clearly indicate that signi®cant bene®ts can be realized through infor-
mation sharing for the supplier and the entire supply chain. However, this bene®t
comes at an expense: the cost for retailers increases by 13.8 and 6.0% under order
information sharing (OIS) and demand information sharing (DIS) respectively.
Therefore, the supplier needs to pass some of its cost savings to the retailers to
encourage them to share information.

6.3. Impact of forecasting error distributions (EB and ED) on the value of
information sharing (IS)

Table 4 shows that at the 5% signi®cance level, the two-way interaction of IS
with the expected bias (EB) and standard deviation (ED), and its three-way inter-
action with both EB and ED, are signi®cant for all three dependent variables. To
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understand how the accuracy of a forecast in¯uences the value of IS, we examine the
impact of forecasting errors on IS in the following sections.

6.3.1. Interaction e� ect between IS and EB

To examine the impact of EB on IS, we plotted the relative total cost (RTC) of the

supply chain and the cost savings as a result of information sharing under

di� erent combinations of IS and EB in ®gure 5. From the relative total cost
®gures shown in the chart, we can see that the cost saving of OIS relative to NIS

(100*(NIS±OIS)/NIS) ®rst increases as EB is increased from ¡50 to ‡50. As EB is

increased further from 50 to 100, the relative cost saving starts to decrease. The cost

saving of DIS relative to NIS (100*(NIS ± DIS)/NIS) follows a similar pattern of

changes, with the exception that there are no signi®cant savings when EB ˆ ¡50 and

0. Therefore, we can conclude that EB does signi®cantly in¯uence the value of

sharing information, and that a moderate level of positive bias can actually increase
the cost savings achieved through sharing information.

From ®gure 5 we can also see that when no information is shared (NIS), or only

demand information is shared (DIS), the total cost across di� erent levels of expected

bias (EB) does not change much, thus showing that EB has a very signi®cant e� ect

on total cost under these conditions. When order information is shared (OIS),

information sharing has much more signi®cant e� ects on total cost. Under all

three levels of information sharing, the total cost ®rst decreases as EB is increased
from ¡50 to 0, and then increases as EB is further increased from 0 to 50 and then to

100. These observations indicate that EB has a greater impact on supply chain

performance when retailers share planned order information with the supplier, as

the bias in the forecast will be passed to the supplier, which will change its

production decisions. These changes will in¯uence total cost for the supply chain.
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The plots of relative total supplier cost (RTCS) and relative retailers cost
(RTCR) versus EB and IS in Figures 6 and 7 show quite di� erent patterns of

changes. For the supplier, the cost saving of OIS increases as EB increases from

¡50 to ‡50 and then it decreases as EB increases from 50 to 100. However, the cost

saving of DIS always increases as EB increases from ¡50 to ‡100. The costs savings

for the supplier range between 35.23 and 49.24% as a result of order information

sharing. The cost savings of DIS range between ¡0:45 and 42.28%. For retailers, the

total cost ®rst decreases as EB increases from ¡50 to 0, and then increases as EB
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increases further from 0 to 50 and to 100 regardless of information sharing. When
retailers share future planned orders (OIS) with the supplier, their total costs increase
substantially relative to no information sharing. The cost increases become more
pronounced as the EB becomes higher. While sharing demand information with the
supplier also increases retailers total costs when the EB ˆ 50 and 100, it does not
signi®cantly change their costs when the EB ˆ ¡50 or 0. These results clearly
indicate that sharing information will signi®cantly bene®t the supplier while it
does not bene®t the retailers at all under most conditions. As a result, the supplier
has to pass some of the cost savings to the retailers in order to motivate them to
share information.

6.3.2. Interaction e� ect between information sharing (IS) and standard deviation
(ED)

To examine the impact of ED on IS, we plotted the relative total cost (RTC) of
the supply chain, and the cost savings, as a result of information sharing under
di� erent combinations of IS and ED in ®gure 8. Figure 8 shows that signi®cant
cost savings can be achieved by sharing order information (OIS) under all three
levels of the initial standard deviation of the forecast error. The cost savings as a
result of demand information sharing (DIS) are lower, but are signi®cant at all levels
of ED. Although the increase in ED increases the cost slightly, it does not decrease
the value of information sharing. Instead, it increases the value of information
sharing in many cases.

Examination of the results for RTCS and RTCR (not shown here) show
that while both OIS and DIS will produce signi®cant cost savings for the
supplier, they also produce signi®cant cost increases for the retailers. When
order information is shared, the supplier can achieve cost savings ranging
from 39.62 to 43.51%, while the retailer costs increase by between 13.41 and
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14.18%. When the demand information is shared, the cost savings for the
supplier range from 15.27 to 18.36%, but retailer costs will increase by 5.73
to 6.38%. These results show that either OIS or DIS will reduce the total
cost for the supplier while increasing the total cost for retailers. However,
the cost savings for the supplier exceed the cost increase for the retailers
under both OIS and DIS, and information sharing reduces the total cost of
the supply chain. OIS results in more signi®cant improvements in the total
cost of the supply chain than DIS. The results also clearly indicate that the
supplier has to provide some incentives to the retailers in order for them to
share information that will enable performance improvements in the supply
chain.

The above results indicate that forecasting error distribution signi®cantly in¯u-
ences the value of information sharing, and therefore supports hypothesis 2.
However, only the expected bias (EB) has a major impact on the value of informa-
tion sharing. The increase rate (IR) and the initial standard deviation (ED) of the
forecast error do not seem to signi®cantly in¯uence the value of information sharing.
Furthermore, increases in forecasting error may not necessarily reduce the value of
information sharing.

6.4. E� ect of interaction between demand pattern (DP), forecasting error
distributions (EB, ED and IR) and information sharing (IS)

The ANOVA results in table 4 show that the DP, the two-way interaction
DP*EB and the three-way interaction DP*EB*IS have very signi®cant e� ects on
all three dependent variables. However, the two-way interactions between DP and
the other two forecasting error parameters (ED and IR), and the three-way inter-
actions between DP, IS and ED or IR are not signi®cant for all three dependent
variables. The following sections discuss how DP in¯uences the performance of the
supply chain, IS, and the relationship between IS and EB.

6.4.1. Impact of DP on supply chain performance
The main e� ect of DP is shown in table 5. When DP ˆ SDT (demand with

seasonality and decreasing trend), the total cost for the supplier, retailers and the
entire supply chain are the lowest among the three demand patterns. Demand with
seasonality but no trend (SEA) results in the next lowest cost, while demand with an
increasing trend and seasonality (SIT) produces the highest total cost for all parties.
When DP ˆ SDT, demand is higher during the earlier periods of the simulation
horizon. Therefore, the initial inventory will be used up earlier and thus the inven-
tory carrying cost will be lower. As time goes by demand decreases, which leaves
more excess capacity. The excess capacity can be used in the later periods to satisfy
the backorders. Therefore, the total backorder costs when DP ˆ SDT should also be
lower than when DP ˆ SEA or SIT. This is why the total costs are lower for the
retailers, suppliers and the entire supply chain. When there is no trend or there is an
increasing trend, there will be excess capacity during the earlier periods of the simu-
lation horizon, and these capacities are wasted. At the same time, initial inventories
are not used up quickly. When demand outstrips capacity in some later periods,
backorders will occur. Therefore, both backorder and inventory carrying costs will
be higher. This is why total costs are higher when DP ˆ SEA or SIT.
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6.4.2. E� ects of three-way interaction between demand pattern (DP), expected
bias (EB) and information sharing (IS)

To examine the e� ects of the interaction between DP, EB and IS, we plotted the

relative total cost (RTC) of the supply chain under di� erent combinations of EB and

IS for DP ˆ SEA, SDT, and SIT in ®gures 9±11 respectively. Figure 9 shows that

when DP ˆ SEA, the lowest total cost is achieved when EB ˆ 0 under all three levels

of IS. When EB was increased from 0 to 50, the total costs under NIS and DIS both

increased substantially while the total cost under OIS increased only slightly. This

means that the cost savings of OIS relative to NIS signi®cantly increased. As EB
increased further, the total cost under OIS increased faster and became higher than

those under NIS and DIS. Therefore, sharing order information slightly worsens the

performance of the supply chain when EB ˆ 100.

The above result indicates that the value of information sharing is signi®cantly

in¯uenced by EB. It seems that the sharing of order information produces the high-

est level of cost savings when EB ˆ 50. When EB increased further, order informa-
tion sharing actually resulted in performance that was worse than when no

information had been shared. This is because sharing information will help to

reduce backorder cost and increase inventory-holding costs. When the bias is

higher, there is already su� cient bu� er stock in the system, and thus the backorder

costs are already very low. Therefore, the sharing of information will not signi®-

cantly reduce the backorder costs, but it will increase the inventory holding cost
substantially.

Figure 10 shows that when DP ˆ SIT, the cost savings achieved by the sharing of

order information will ®rst increase as EB increases from ¡50 to 0 and then to 50.

When EB increases from 50 to 100, the value of order information sharing (OIS)

decreases to a negative ®gure. When demand information is shared, the cost saving is

almost zero when EB ˆ ¡50 and 0. However, the savings become signi®cant (8.28%)

when EB ˆ 50, and then become negative when EB ˆ 100. This pattern of change in
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the value of IS is similar to that seen under the SEA demand, except that the value of

sharing information shows a greater decline when EB is increased from 50 to 100.

Figure 11 shows total cost under di� erent levels of IS and EB for SDT demand.

Again, the pattern of change in IS is similar to that under DP ˆ SIT (®gure 10). The
major di� erence is that both DIS and OIS result in signi®cant cost savings at

EB ˆ 100 under SDT, while the cost savings are negative under SIT.

The higher value of information sharing under the SDT demand when EB ˆ 100

can be explained by the interaction between the expected bias in the forecasting error

and the imbalance between the capacity and forecasted demand. When the demand
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has a decreasing trend, the demand is higher in the initial periods of the simulation.
When a high positive bias is introduced by the retailers and shared with the supplier
through divulging information on planned orders, the supplier cannot produce
enough to meet orders placed by the retailers. Therefore, the shared information
does not result in earlier or larger orders, and thus the retailers’ inventory holding
costs are not much increased. When the demand pattern has an increasing trend,
however, the forecasted demands are lower than the available capacity during the
earlier periods of the simulation horizon, and thus the large positive bias will lead to
substantially increased inventory carrying costs when information is shared. This is
why information sharing can produce worse performance when the bias is high. The
above explanations were supported by detailed examinations of the various com-
ponent costs for the supplier and retailers.

Such detailed examinations also indicate that the sharing of information provides
signi®cant bene®ts for the supplier and for the entire supply chain under most con-
ditions. However, sharing information hurts the retailers most of the time. While
sharing planned order information (OIS) will save the supplier from 34.59 to 51.39%
of total cost, it increases the retailers’ total cost by 9.59 to 18.59% under the experi-
mental settings of this study. The expected bias in the forecasts and the demand
pattern also signi®cantly in¯uence savings or cost increases of sharing information.
Under most conditions, positive bias in the retailer’s forecasts will make information
sharing more bene®cial to the supplier while making the retailer’s situation even
worse. These ®ndings clearly indicate that the supplier has to provide incentives to
the retailers in order for them to share information.

Overall, the results in ®gures 9±11 support the third hypothesis. The demand
pattern faced by retailers signi®cantly in¯uences the impact of forecasting error bias
(EB) on the value of information sharing. When the demand has an increasing trend,
a high positive bias will signi®cantly reduce the value of sharing information. When
the demand has a decreasing trend, this e� ect is less pronounced. Under all three
demand patterns, the value of information sharing is highest when there is a slight
positive bias (EB ˆ 50).

7. Conclusions
The paper has investigated the impact of forecasting errors on the performance

of a supply chain, and the cost savings that can be achieved through sharing infor-
mation between retailers and the supplier in a supply chain. Through comprehensive
simulation experiments and subsequent analysis of the simulation outputs, we have
attained the following important ®ndings.

. Both the expected bias and the initial standard deviation of the forecast error
signi®cantly in¯uence total costs for the supplier, retailers and the entire supply
chain. The rate of increase in the standard deviation of the forecasting errors
did not show a signi®cant impact on the supply chain. Furthermore, the inter-
action between the expected bias and the initial standard deviation is also
signi®cant in in¯uencing the performance of the supply chain. When there is
a higher variability in the forecasting error, a positive bias in the forecast can
help to reduce costs. Therefore, a positive bias in the forecast can be used to
protect against uncertainty in the demand forecast.

. Information sharing can signi®cantly in¯uence the performance of a supply
chain. When retailers share either the projected net requirement or future
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planned order information with a supplier, the supplier can achieve dramatic
cost savings. Substantial cost savings can also be achieved for the entire supply
chain. However, the retailers usually do not receive any savings. Instead, their
total costs are often increased by the sharing of information with the supplier.
Furthermore, while sharing of planned order information will produce more
signi®cant cost savings for the supplier and the entire supply chain than the
sharing of projected net requirement information, it also hurts the retailers
more under most conditions. Therefore, this study clearly indicates that sup-
pliers must provide incentives to their retailers for them to make supply chain
improvements through information sharing.

. The expected bias of forecasting errors can signi®cantly in¯uence the value of
information sharing. The standard deviation and the pattern of deterioration,
however, do not signi®cantly in¯uence the value of information sharing. The
sharing of information usually results in more cost savings for the supplier and
the entire supply chain when there is a slight positive bias in the forecast than
when there is no bias or a negative bias. However, the positive bias in the
forecast usually also makes information sharing less desirable for the retailers.

. The demand pattern signi®cantly a� ects how forecasting errors in¯uence the
value of information sharing. When there is a strong positive bias in the fore-
cast, the sharing of planned order information can increase the total cost for
the supply chain if retailers face demand with an increasing trend. However,
when retailers face demand with a decreasing trend, the sharing of information
can achieve signi®cant cost savings even when there is a strong positive bias in
the forecast. When the expected bias in the forecast is small or zero, the impact
of the demand pattern on the value of information sharing is smaller.

These ®ndings enhance our understanding of the bene®ts of information sharing
in a supply chain. The magnitude of possible cost savings or increases for di� erent
parties as a result of information sharing can help motivate companies to share
information and weigh the cost of sharing information against the bene®ts. The
magnitudes of the cost savings or increases as a result of information sharing can
also be used to design incentive schemes to induce information sharing between the
supplier and retailers. The results of this study can also help companies to improve

the performance of their supply chain by introducing an appropriate level of bias in
their forecasts.

Although the ®ndings from this simulation study provide important insights into
the possible bene®ts of information sharing between a supplier and retailers in a
supply chain under demand uncertainty, this study also has some limitations. The
following are those limitations, and the possible directions of future research:

. The structure of the supply chain used in this study is a simpli®ed case with
four retailers and one capacitated supplier dedicated to a single product. There
are many possible supply chain con®gurations. It will be useful to investigate
the impact of supply chain structure on the conclusions of this study by vary-
ing the ratios between the number of suppliers and retailers. It will also be
useful to examine a supply chain with suppliers, manufacturers and retailers.

. We only examined three kinds of information sharing between a supplier and
retailers in this study. Other types of information (e.g. inventory levels,
capacity, planned production, etc.) can also be shared. Future research should
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propose and evaluate these other modes of information sharing. Furthermore,
the timing of information sharing is also something that is worthy of further
investigation.

. The cost structure (ordering or set-up costs, transportation costs, inventory
costs and backorder costs) applied in this study represents one special case.
Examination of the impact of cost structures on the e� ect of information
sharing in a supply chain may shed further light on the value of information
sharing.

. In this study, we assume that the supplier has a constant capacity and uses a
capacitated lot-sizing rule to make its production decisions. It is also assumed
that the retailers use EOQ to make their inventory decisions. Investigation of
the impact of alternative production and inventory policies on the value of
information sharing under di� erent capacity constraints will also be a fruitful
area of future research. Alternative policies of capacity adjustment should also
be examined.
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