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Abstract

We study the optimal inventory policy of vendor operating dual channels. Demand of each
channel depends on inventory levels of both channels. We propose a multi-period stochastic
dynamic programming model which shows that under mild conditions, the myopic inventory
policy is optimal in the infinite horizon problem. We consider the case where vendor neglects
effects of inventory levels and give conditions under which total inventory of the system in
this case is lower than optimal. Through numerical examples, we find that difference between
inventory levels under these two cases can be very large, so effects of inventory levels are not
negligible. Meanwhile, we do numerical examples to compare optimal inventory levels under
centralized and decentralized control, observing that vendors not always order higher under
decentralized control. Besides, we do sensitivity analysis of the optimal inventory levels and
service levels and examine effect of different ways to treat unmet demand numerically.

Introduction

Nowadays, customers can buy products through many channels, e.g., physical stores, online
stores, through telephone or by email. Among these channels, physical store and online store
are often used. Different channels have their own advantages and disadvantages. In physical
stores, customers can feel and touch products physically, but need a travel cost to go to the
stores. On the internet, customers can easily access stores online with convenience to obtain
information about products, but they can’t acquire products immediately. Therefore, different
channels can satisfy different preferences of customers. Some customers prefer a particular kind
of stores, physical stores or online stores. Other than fixed on a particular kind of stores, there
are also customers dynamically choosing channels according to different prices and service
levels (e.g., fill rate, sales effort).

To satisfy different needs of customers, many vendors establish online stores as a supplement
to physical stores, like Gome and Suning, which are two largest household appliances sales
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companies in China. And many vendors open up physical stores on the basis of online stores,
such as the internet pure-player iParty.com in the USA who has opened 52 physical stores.
Multi-channel retailing can offer a better service to customers and bring with a higher customer
loyalty (Wallace et al. (2004)). Meanwhile, it faces some challenges in operations along with
opportunities, as stated by Müller-Lankenau et al. (2004) :“a company’s activities in one
channel influence a customer’s decision on whether and how to use another channel”. So the
vendor should take the interaction of dual channels into account when integrating physical and
online channels.

In this paper, we want to study the inventory management problem of vendor operating
dual sales channels. Researchers assume demands in every period are independent identically
distributed and are not influenced by inventory level in traditional literature on inventory
management. However, many evidences show that inventory level can affect demand. On
one hand, more products on the shelf may attract the attention of customers more easily. In
the review by Urban (2005), it is stated:“ we often see mass displays of items in stores that
are used as ‘physical stock’ (Larson and DeMarais (1990)) to stimulate sales of some retail
items...... thus, increased inventory levels give the customer a wider selection and increase
the probability of making a sale”. On the other hand, we think that, a higher inventory level
provides a higher service level (i.e., fill rate) with higher degree of customer satisfaction, thus
leads to a larger demand.

Although there are models on “inventory-level-dependent demand rate” (i.e., demand rate
depends on the inventory level and the higher inventory level is, the larger demand rate is),
they only consider the inventory management of one channel. We want to study the inventory
problem of operating dual channels. We propose a kind of demand which we call “inventory-
level-dependent demand” and examine its effect on the structure of optimal inventory policy
and optimal inventory levels in this paper.

We formulate a multi-period stochastic dynamic programming model and show that under
weak conditions there exists an optimal myopic policy for the infinite horizon problem. So the
inventory problem of the vendor can be simplified to a single period problem and we obtain
analytical formulations of optimal inventory levels of dual channels. Based on this result, we
investigate the impact of inventory-level-dependent demand on the optimal inventory levels
and service levels of dual channels. Meanwhile, we compare the optimal inventory levels
to those of a system without consideration of effects of inventory levels and give conditions
under which the optimal total inventory level in the former one is higher than that in the
latter one. Through numerical example, we show that the difference of optimal inventory
levels in the two cases may be very large, so effects of inventory levels are not negligible.
After that, we run numerical examples to compare optimal inventory levels under centralized
control and decentralized control. The results show that vendors tend to order more under
decentralized control when inventory competition between dual channels is not strong. For
the cases with strong inventory competition, vendors may enlarge the inventory level of dual
channels under centralized control to reduce competing effect. Furthermore, we examine how
different ways of treating unmet demand affect optimal inventory levels. We consider three
treatment mechanisms. The first one is unmet demand in physical store is lost and in online
store it is backlogged. The second one is unmet demands are lost in both channels (lost
sales case). The last one is unmet demands in both channels are both backlogged (backorder
case). The optimal inventory levels under lostsales case are always higher than the levels
under backorder case and the distance between optimal inventory levels in the first mechanism
is always the largest.
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Literature Review

There are three streams of literature related to our study. The first one is on inventory-
level-dependent demand rate and inventory competition. The second one is on multi-location
and multi-item inventory problems. The last one is on inventory distribution problem in a
multi-channel system.

First, we briefly review the literature on inventory-level-dependent demand rate. As men-
tioned in Introduction, Urban (2005) gives a comprehensive review on the inventory models
with inventory-level-dependent demand rate. The relevant papers regard time as continuous
with demand rate being deterministic. The traditional approach to solve this kinds of models
uses the time domain to generate a differential equation which represents the inventory level
during the cycle (e.g., Baker and Urban (1988)). However, solving the differential equation is
possible only for very special demand rate functions (e.g., the power function in Urban (2005)).
Our assumption is different from theirs. In our model, time is discrete and demand is stochas-
tic with relationship to inventory levels of dual channels after replenished. Some researchers
have provided empirical evidences on inventory-level-dependent demand rate. Wolfe (1968)
presents empirical evidence of the relationship between sales and inventory, noting that the
sales of style merchandize, such as women’s dresses of sports clothes, are proportional to the
amount of inventory displayed. Koschat (2008) represents empirical evidence that demand
indeed varies with inventory in the magazine retailing. Papers in this area assume or indicate
that demand rate is proportional to the inventory displayed. However, we think even if not all
the inventory we ordered is displayed, demand may increase with the inventory level, because
higher inventory level brings higher fill rate and higher service level, thus higher demand.
On the other hand, many papers study inventory competition among multiple newsvendors.
Lippman and McCardle (1997) discuss a competitive newsvendor problem, in which the total
demand is allocated among multiple newsvendors under certain splitting rules. They find that
due to the demand-stealing effect, i.e., the more the newsvendor orders, the less the other
newsvendors’ demand stochastically, competition among multiple newsvendors results in sup-
ply chain inventory overstocking. Cachon (2003)(section 5) studies a similar newsvendor game
but with a proportional demand allocation rule. He also finds that demand stealing effect
leads to inventory overstocking. Charles (2010) extends the risk-neutral assumption in Ca-
chon (2003) to risk-averse and shows that while the demand-stealing effect increases the total
order quantity of the newsvendors, loss aversion effect decreases the newsvendors’ total order
quantity and if strong enough, may lead to a lower total inventory level of the decentralized
supply chain than that of an integrated supply chain. In our model, dual channels compete
through inventory levels. So, to integrate dual channels, the vendor should take the competing
effect of inventory levels into account when making replenishment decisions.

The second stream of literature related to our paper is on multi-item and multi-location
inventory problems. Veinott (1965) discusses a multi-product dynamic nonstationary inventory
problem with periodic review. The author gives conditions to ensure the optimality of base
stock policy. Ignall and Veinott (1969) analyze the same problem with relaxed conditions.
Johnson (1967) considers a multi-item inventory problem system with periodic review and
set-up cost. Demand in every period is assumed to depend on the stock level at the beginning
of the period. The infinite horizon optimal policy is (σ, S) policy, which orders up to S for
any point x (the stock level at the beginning of the period) in the reorder region σ and do
not order for x not in σ. Because of the complexity of the problem, we don’t take set-up cost
into account. Our research is closely related to Ignall and Veinott (1969). We use the method
in it to prove the optimality of myopic inventory policy. The difference between our research
and theirs is that we assume demands of dual channels are inventory-level-dependent and
we explore the impact of inventory-level-dependent demand on optimal inventory levels and
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optimal service levels. Kalin (1980) considers a standard period review, stochastic, dynamic
multi-product inventory model with setup cost. He extends the results of Johnson (1967) and
Wheeler (1968) by providing general conditions for the existence of an optimal (σ, S) policy.
Ribinson (1990) examines a multi-period, multi-location inventory problem when allowing
transhipment between retail outlet. Erkip et al. (1990) treat a depot-warehouse system, in
which demand is allowed to be correlated with warehouses and also correlated in time. Eppen
and Schrage (1981) model a depot-warehouse system with independent normally distributed
stationary demand at the warehouses with lead times from supplier to the depot and from the
depot to warehouses. The paper derives optimal parameters for given structure of the optimal
policy. All these papers do not consider the effects of inventory levels on demand.

The third stream of literature related to our study is on inventory distribution problem
in multi-channel system. The configuration of first part consists of a single vendor. Liang
et al. (2011) compare site-to-store and store-to-site strategies for dual-channel integration.
The site-to-store (or store-to-site) strategy can fill unmet orders in the physical channel (or
online channel) from the inventory in the online channel (or physical channel). Alptekinog̈lu
and Tang (2005) develop a model of general multi-channel distribution system subject to
stochastic demand. They consider a system distributing products to n sales locations through
m cross-docking depots. Some papers (e.g. Agatz et al. (2008), Cattani et al. (2004)) analyze
inventory rationing policy in multi-channel systems. They view different channels as different
demand classes. While these policies are practical, they neglect the fact that “a company’s
activities in one channel influence a customer’s decision on whether and how to use another
channel” (Müller-Lankenau et al. (2004)). If one channel has a higher service level compared
to other channels, customers buying from low-service-level channels may switch to the high-
service-level channel. In this paper, we consider the effect of inventory level across channels.
The second part literature is on inventory distribution problem in a multi-channel distribution
system with a manufacturer and an independent retailer. Geng and Mallik (2007) consider
the problem that a manufacturer distributes his product to the end consumer both through
the independent retailer and his direct channel. If one channel is out of stock, a fraction of the
unsatisfied customers visit the other channel, which induces inventory competition between
the channels. Chen et al. (2008) study a manufacturer’s problem of managing his direct online
sales channel together with an independently owned retail channel. The two channels compete
in service. Wu and Chiang (2011) discuss a system in which a wholesaler sells fashion products
through two channels with asymmetric sales horizons. The sales horizon of e-tail channel is
longer than that of a retailer channel. They suggest mechanisms to coordinate decisions of
retailer and e-tailer in disjointed system. Seigfert et al. (2006) assume that the manufacturer
has a direct market that serves a different customer segment with the traditional retail channel
(not owned by the manufacturer) and that demands in the two channels are thus independent.
They compare a dedicated supply chain to a cooperative supply chain.

Model and Structure of The Optimal Policy

The inventory system considered in this paper relates to a vendor selling goods to customers
through dual channels: a physical store and an online store. The system is operated for multiple
periods. Customer demands to both stores are stochastic. Revenues are received for satisfying
customer demands. Unmet demands in the physical store are lost, whereas those in the online
store are backlogged. Here, customers backlogged will pay at the time they are satisfied.
Selling prices in dual channels are exogenously determined. The vendor makes replenishment
decision at the beginning of each period, with zero lead time for replenishment. Also, we
assume that no set-up cost is incurred for replenishment. The replenishment decision of the
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vendor is to determine inventory levels of dual channels. There is no inventory transhipment
between dual channels. The objective of the vendor is to maximize the total profit of the entire
system.

We introduce the following notations:
r1: selling price in the physical store
r2: selling price in the online store
h1: unit inventory-holding cost in the physical store
h2: unit inventory-holding cost in the online store
l1: unit lostsales-penalty cost in the physical store
l2: unit backorder-penalty cost in the online store
c1: unit variable order cost for the physical store
c2: unit variable order cost for the online store
γ: discount factor
M1: capacity of warehouse for the physical store
M2: capacity of warehouse for the online store
T : the number of periods during the decision horizon
Let, in a period, y1 and y2 be inventory levels of the two channels after replenishment,

respectively. Referring to the idea in the literature (Urban (2005), Cachon (2003)), we assume
that the demand in one channel increases with its inventory level. At the same time, we
also consider that the demand in one channel may decrease with the inventory level of the
other channel. That is, the two channels may compete for parts of customers. This should
be reasonable for that some of customers may choose channels according to different prices
and service levels (e.g., fill rate, sales effort), hence the two channels will compete for these
customers. We adopt the following demand structure:

D1(y1, y2) = a1y1 − b1y2 + ε1, (1)

D2(y1, y2) = −a2y1 + b2y2 + ε2. (2)

In the above formulas, ǫ1(∈ [v1, u1]) and ǫ2(∈ [v2, u2]) are independent random variables with
distribution functions F1(·) and F2(·) respectively, representing demands of loyal customers
to the individual channels. The demands of loyal customers are not influenced by inventory
levels in either channels. Other than loyal customers, more demand to a particular channel is
attracted with a linear relationship to its own inventory level (i.e. a1y1 and b2y2), and also a
part of the demand is distracted to the other channel with a linear relationship to the other
inventory level (i.e. −b1y2 and −a2y1). Hence, a1 and b2 indicate demand attraction ability
of inventory levels, b1 and a2 indicate competing effect of inventory levels. To avoid trivial
cases, we suppose that a1, a2, b1 and b2 all belong to (0, 1) and b1 ≤ a1, a2 ≤ b2, a1 + b1 ≤ 1,
a2+b2 ≤ 1. Moreover, in order to guarantee non-negative D1(y1, y2) and D2(y1, y2), we assume
b1 ≤

v1
M2

and a2 ≤
v2
M1

.
Denote, by (x1(t), x2(t)), the state of period t, which corresponds to initial inventories of

dual channels in period t. Here, x1(t) is non-negative, but x2(t) can be either negative or
nonnegative. Because no set-up cost is incurred for replenishment, the vendor can replenish
inventory in every period without more cost caused from frequent set-up. Recall that unmet
demand is backlogged at the online store. Therefore, the unmet demand must be satisfied in
the next period to avoid more penalty cost. In doing so, the optimal inventory policy for the
online store should be to replenish the inventory up to a nonnegative level.

Finite Horizon Problem

Suppose the system is operated for T periods. In period t (1 ≤ t ≤ T ), on observed state
(x1, x2), if the vendor replenishes inventory levels to y1 and y2, the revenues of dual channels
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are
r1Emin[y1,D1(y1, y2)], (3)

and

r2E(min[y2,D2(y1, y2)] + γ[x2(t+1)]−) = r2E[D2(y1, y2)]− (1− γ)r2E[D2(y1, y2)− y2]
+, (4)

respectively, where z+ is the positive part of z, and z− is the negative part of z. Revenue of
the physical store (3) is obvious. Revenue of the online store, as shown at the left hand side
of (4), includes two parts: the revenue from immediately satisfied demand in current period,
and the revenue from unmet demand that is satisfied in next period. (Note that we discount
revenue from the unmet demand received in next period to current period.)

Then, the resultant profits of dual channels are respectively

r1Emin[y1,D1(y1, y2)]− h1E[y1 −D1(y1, y2)]
+ − l1E[D1(y1, y2)− y1]

+ − c1(y1 − x1), (5)

and

r2E[D2(y1, y2)]− (1− γ)r2E[D2(y1, y2)− y2]
+ − h2E[y2 −D2(y1, y2)]

+ − l2E[D1(y1, y2)− y1]
+

− c2(y2 − x2)
(6)

In the next period, the state transfers to ([y1 −D1(y1, y2)]
+, y2 −D2(y1, y2)).

Define

C(y1, y2) = r1Emin[y1,D1(y1, y2)]− h1E[y1 −D1(y1, y2)]
+ − l1E[D1(y1, y2)− y1]

+

+ r2E[D2(y1, y2)]− ((1− γ)r2 + l2)E[D2(y1, y2)− y2]
+ − h2E[y2 −D2(y1, y2)]

+

− c1y1 − c2y2.

Let, for given state (x1, x2) at period t, Vt(x1, x2) be the expected profit-onward from
period t by the optimal inventory policy.

We assume
VT+1(x1, x2) = c1x1 + c2x2 (7)

for the end period.
The optimality equations can be expressed as follows:

Vt(x1, x2) = c1x1 + c2x2 + max
x1≤y1≤M1,x

+

2 ≤y2≤M2

{Ht(y1, y2)}, 1 ≤ t ≤ T, (8)

Ht(y1, y2) = C(y1, y2) + γEVt+1

(

[y1 −D1(y1, y2)]
+, y2 −D2(y1, y2)

)

, 1 ≤ t ≤ T. (9)

The following lemma is straightforward from Topkis (1968).

Lemma 1 If f(u, ω) is a convex real-valued function on the convex set A, then g(u) =
infω:(u,ω)∈Af(u, ω) is convex on {u : there exists (u, ω) ∈ A}.

Then, we have the following result.

Theorem 1 (1) Ht(y1, y2) is concave in y1 and y2 for all 1 ≤ t ≤ T ;
(2) Vt(x1, x2) is concave and decreasing in x1 and x2 for all 1 ≤ t ≤ T + 1.

See proof in the appendix. Because replenishment decisions of dual channels are corre-
lated, there is no simple structure of the optimal inventory policy in finite horizon problem.
Nevertheless, Theorem 1 can be useful in calculating the optimal policy.
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Infinite Horizon Problem

For the model of finite horizon problem, we can rewrite optimality equations (7) to (9). By
referring to the method in chapter 9.4.2 of Zipkin (2000), we define

V +
t (x1, x2) = −c1x1 − c2x2 + Vt(x1, x2), 1 ≤ t ≤ T + 1,

and

C+(y1, y2) =− (r1 + l1)E[D1(y1, y2)− y1]
+ − (h1 − γc1)E[y1 −D1(y1, y2)]

+ + r1E[D1(y1, y2)]

− ((1− γ)r2 + l2)E[D2(y1, y2)− y2]
+ − h2E[y2 −D2(y1, y2)]

+

+ (r2 − γc2)E[D2(y1, y2)]− c1y1 − c2(1− γ)y2.

Then, optimality equations (7) to (9) are transformed to the following recursion:

V +
T+1(x1, x2) = 0, (10)

Ht(y1, y2) = C+(y1, y2) + γE{V +
t+1([y1 −D1(y1, y2)]

+, y2 −D2(y1, y2))}, 1 ≤ t ≤ T, (11)

V +
t (x1, x2) = max{Ht(y1, y2) : x1 ≤ y1 ≤ M1, x

+
2 ≤ y2 ≤ M2}, 1 ≤ t ≤ T. (12)

From (11), we can see that C+(y1, y2) is the system profit in a single period.

Lemma 2 C+(y1, y2) is concave and ∂2

∂y1∂y2
C+(y1, y2) =

∂2

∂y2∂y1
C+(y1, y2) ≥ 0 for any y1 and

y2.

For infinite horizon system, we consider a stationary inventory policy, denoted by (π1, π2).
Here, π1 specifies the replenishment rule of the physical store, by which the order-up-to level
is determined for a given state, and π2 has a similar meaning. In this subsection, we continue
to use C(y1, y2) and C+(y1, y2) defined previously.

Let V (x1, x2|π1, π2) be the total expected discounted profit of dual channels over the infinite
horizon for a given initial state (x1(1) = x1, x2(1) = x2) when we use policy (π1, π2). We have

V (x1, x2|π1, π2) = E{

∞
∑

t=1

γt[c1x1(t) + c2x2(t) + C(y1(t), y2(t))]|

x1(1) = x1, x2(1) = x2, x1(t) ≤ y1(t) ≤ M1, (x2(t))
+ ≤ y2(t) ≤ M2}.

(13)

Substituting x1(t+ 1) = [y1 −D1(y1, y2)]
+ and x2(t+ 1) = y2 −D2(y1, y2) into (13) leads

to

V (x1, x2|π1, π2) = c1x1+c2x2+E[
∞
∑

t=1

γtC+(y1(t), y2(t))|x1(t) ≤ y1(t) ≤ M1, (x2(t))
+ ≤ y2(t) ≤ M2].

Recall that C+(y1, y2) is the profit of the system in a single period. Let y∗ = (y∗1 , y
∗
2) be

one of the maximizer of C+(y1, y2) on domain Ω = {0 ≤ y1 ≤ M1, 0 ≤ y2 ≤ M2}.

Lemma 3 If 1−a1−b2+a1b2−a2b1 6= 0 and F1(·), F2(·) both are strictly increasing distribution
functions, y∗ is unique.

In the following, we assume 1− a1 − b2 + a1b2 − a2b1 6= 0 and F1(·), F2(·) are both strictly
increasing distribution functions (under these conditions, the optimal inventory policy will have
a simple structure), in which condition 1 − a1 − b2 + a1b2 − a2b1 6= 0 holds with probability
one.
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Define functions

z1(x2) = arg max
0≤y1≤M1

C+(y1, x2), y∗2 < x2 ≤ M2,

z2(x1) = arg max
0≤y2≤M2

C+(y1, x2), y∗1 < x1 ≤ M1.
(14)

Denote regions

Ω1 = {x ∈ R2 : x ≤ y∗}, Ω2 = {x ∈ R2 : y∗2 < x2 ≤ M2, 0 ≤ x1 < z1(x2)},

Ω3 = {x ∈ R2 : y∗1 < x1 ≤ M1, x2 < z2(x1)}, and Ω4 = {x ∈ R2 : y∗1 ≤ x1 ≤ M1, y
∗
2 ≤ x2 ≤ M2}.

(15)

Lemma 4 z1(x2) and z2(x1) are non-increasing functions.

We define the following inventory policy:

ȳ(x1, x2) =























y∗, x ≤ y∗,

(x1, z2(x1)), x1 > y∗1 and x2 < y∗2,

(z1(x2), x2), x1 < y∗1 and x2 > y∗2,

(x1, x2), x ≥ y∗.

(16)

The following theorem shows that ȳ(x1, x2) is the myopic policy (maximizing the profit in
current period) and gives conditions under which the myopic inventory policy is optimal for
infinite horizon problem.

Theorem 2 If 1 − a1 − b2 + a1b2 − a2b1 6= 0 and F1(·), F2(·) are both strictly increasing
distribution functions, ȳ(x1, x2) is the myopic inventory policy and it is optimal in the infinite
horizon problem.

The proof is given in appendix.

Properties

To obtain analytical results of the optimal inventory levels, we assume the initial inventories
of dual channels in the first period are both zero from now on. The following corollary is
straightforward from Theorem 2.

Corollary 1 When initial inventories of dual channels in the first period are both zero, the
optimal inventory policy is to order inventory up to y∗ in every period.

Now, the infinite horizon problem can be transformed to a single period problem as follows:

maximize C+(y1, y2)

s.t. 0 ≤ y1 ≤ M1

0 ≤ y2 ≤ M2.

(17)

It is valuable to study the impact of inventory-level-dependent demand on the optimal
inventory levels and service levels of dual channels. Suppose (y

′

1, y
′

2) is the maximizer of
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C+(y1, y2). By taking derivatives of C+(y1, y2) with respect to y1 and y2, with incorporation
of functions F1(·) and F2(·), we have

∂

∂y1
C+(y1, y2) = − (1− a1)(r1 + l1 + h1 − γc1)F1((1− a1)y

′

1 + b1y
′

2)− a2((1 − γ)r2 + l2 + h2)

F2(a2y
′

1 + (1− b2)y
′

2) + r1 − c1 − γa2(r2 − c2) + a2l2 − a1l1 + l1 = 0,
(18)

∂

∂y2
C+(y1, y2) = − b1(r1 + l1 + h1 − γc1)F1((1 − a1)y

′

1 + b1y
′

2)− (1− b2)((1 − γ)r2 + l2 + h2)

F2(a2y
′

1 + (1− b2)y
′

2) + (1− γ + γb2)(r2 − c2) + l1b1 − l2b2 + l2 = 0.
(19)

Solving F1((1 − a1)y
′

1 + b1y
′

2) and F2(a2y
′

1 + (1− b2)y
′

2) from (18) and (19) obtains

F1((1− a1)y
′

1 + b1y
′

2) =
l1

k1
+

(r1 − c1)(1− b2)− (r2 − c2)a2
[(1− a1)(1− b2)− a2b1]k1

, (20)

F2(a2y
′

1 + (1− b2)y
′

2) =
l2 − γ(r2 − c2)

k2
+

(r2 − c2)(1− a1)− (r1 − c1)b1
[(1− a1)(1− b2)− a2b1]k2

, (21)

where k1 = r1 + l1 + h1 − γc1 and k2 = (1− γ)r2 + l2 + h2.
Let

A = (r1 − c1)(1 − b2)− (r2 − c2)a2,

B = (r2 − c2)(1− a1)− (r1 − c1)b1.

In practice, 1− b2 should be much larger than a2 and 1−a1 should be much larger than b1.
So, provided that the profit margin (r1 − c1) of the physical store is not significantly different
from that of the online store (r2 − c2), A ≥ 0 and B ≥ 0 always hold. In the following, we
assume A ≥ 0 and B ≥ 0. Then, the right hand side of equations (20) and (21) are larger than
0.

On the other hand, if the right hand side of equations (20) or (21) are larger than 1, y
′

1 or
y
′

2 are infinite. This case is very trivial. So, we only consider cases in which the right hand
sides of equations (20) and (21) are between 0 and 1.

From (20) and (21), we have

y
′

1 =
(1− b2)F

−1
1 ( l1

k1
+ (r1−c1)(1−b2)−(r2−c2)a2

[(1−a1)(1−b2)−a2b1]k1
)− b1F

−1
2 ( l2−γ(r2−c2)

k2
+ (r2−c2)(1−a1)−(r1−c1)b1

[(1−a1)(1−b2)−a2b1]k2
)

(1− a1)(1− b2)− a2b1
,

(22)

y
′

2 =
(1− a1)F

−1
2 ( l2−γ(r2−c2)

k2
+ (r2−c2)(1−a1)−(r1−c1)b1

[(1−a1)(1−b2)−a2b1]k2
)− a2F

−1
1 ( l1

k1
+ (r1−c1)(1−b2)−(r2−c2)a2

[(1−a1)(1−b2)−a2b1]k1
)

(1− a1)(1− b2)− a2b1
.

(23)
To avoid trivial cases, we assume that y

′

1 and y
′

2 are nonnegative. In practice, 1−b2 is much
larger than b1 and 1−a1 is much larger than a2. So, provided that the cost factors (r1, r2 and
l1, l2 etc) and scale of loyal customers (u1, u2 and v1, v2) of dual channels are not significantly
different from each other, y

′

1 and y
′

2 are nonnegative. In the following, we study cases where
(y

′

1, y
′

2) satisfies constraints 0 ≤ y
′

1 ≤ M1 and 0 ≤ y
′

2 ≤ M2. Then, y
∗
1 = y

′

1, y
∗
2 = y

′

2.

Sensitivity Analysis

The following proposition states how the optimal inventory levels change as demand attraction
ability of inventory level increases.

Proposition 1 (1) y∗1 is increasing with a1, y
∗
2 is decreasing with a1;

(2) y∗1 is decreasing with b2, y
∗
2 is increasing with b2.
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Now, we calculate the optimal service levels of dual channels. Here, the service level
denotes the probability of an arbitrarily arriving customer being served from stock on hand,
i.e., Prob{number of demands in a period ≤ inventory-on-hand at the beginning of the period}.

The optimal service level of the physical store is

s∗1 = P{y∗1 ≥ D1(y
∗
1, y

∗
2)} = P{(1 − a1)y

∗
1 + b1y

∗
2 ≥ ε1}. (24)

Substitute equations (22) and (23) into the above, and note that F1(·) is the cumulative
distribution of ε1, we have

s∗1 =
l1

k1
+

(r1 − c1)(1 − b2)− (r2 − c2)a2
[(1− a1)(1 − b2)− a2b1]k1

. (25)

Similarly, the optimal service level of the online store is given by

s∗2 = P{y∗2 ≥ D2(y
∗
1, y

∗
2)} =

l2 − γ(r2 − c2)

k2
−

(r1 − c1)b1 − (r2 − c2)(1− a1)

[(1− a1)(1 − b2)− a2b1]k2
. (26)

From equations (25) and (26), we can easily obtain the following proposition.

Proposition 2 (1) s∗1 (s∗2) increases with the profit margin of the physical store (online store)
and decreases with the profit margin of the online store (physical store);
(2) s∗1 increases with a1 and b1, s

∗
2 decreases with a1 and b1;

(3) s∗1 decreases with a2 and b2, s
∗
2 increases with a2 and b2.

It is known, from Proposition 1, that y∗1 increases with a1. Note that demand of physical
channel that is D1 also increases with a1. So “s∗1 increases with a1” in (2) in Proposition 2
implies that increment of y∗1 is faster than D1 as a1 increases. When b1 increases, y∗1 may
increase or decrease and D1 decreases. When y∗1 increases, s∗1 must increase as b1 increases.
When y∗1 decreases with b1, “s

∗
1 decreases with b1” in (2) in Proposition 2 implies that decrement

of y∗1 must be slower than decrement of D1 as b1 increases. Interpretations of other parts in
Proposition 2 are similar.

What if the vendor neglects effects of inventory levels?

In this subsection, we examine the effect of inventory-level-dependent demand on the optimal
inventory levels. What if the vendor neglects effects of inventory levels? In this case, he regards
parameters a1, b1, a2 and b2 in demand formulas (1) and (2) as zero. That is, demands in
two channels are ǫ1 and ǫ2 respectively. The inventory problem of the system are simplified to
two independent newsvendor problems. So the optimal inventory levels of dual channels are
y
′′

1 = F−1
1 ( r1−c1+l1

k1
) and y

′′

2 = F−1
2 ( (1−γ)(r2−c2)+l2

k2
), with corresponding service levels being s

′′

1

and s
′′

2 .
The following proposition compares optimal inventory levels in this case with the optimal

decisions when taking effects of inventory levels into account.
Let

C = (r1 − c1)[(1 − b2)a1 + a2b1]− (r2 − c2)a2,

D = (r2 − c2)[(1− a1)b2 + a2b1]− (r1 − c1)b1,

e1 = a1 − a2 − (a1b2 − a2b1),

e2 = b2 − b1 − (a1b2 − a2b1).

Proposition 3 (1) When C ≥ 0 and D ≥ 0, it follows that y∗2 ≥ y
′′

2 if y∗1 ≤ y
′′

1 ; and y∗1 ≥ y
′′

1

if y∗2 ≤ y
′′

2 .
(2) When C ≥ 0, D ≥ 0, e1 ≥ 0 and e2 ≥ 0, it follows that y∗1 + y∗2 ≥ y

′′

1 + y
′′

2 .
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When r1 − c1 = r2 − c2, condition C ≥ 0 is equivalent to e1 ≥ 0 and D ≥ 0 is equivalent
to e2 ≥ 0. Conditions e1 ≥ 0 and e2 ≥ 0 indicate the demand attraction ability of inventory
levels in the system is heavier than the competing effect of inventory levels in the system.
Furthermore, when e1 ≥ 0 and e2 ≥ 0, conditions C ≥ 0 and D ≥ 0 indicate increasing total
inventory level is beneficial. So, the vendor should order more total inventory for dual channels
if he takes effects of inventory level into account. Sometimes, the optimal inventory level of one
channel may be lower than the level with which the vendor neglects effects of inventory levels;
this must appear under the consideration of reducing the competing effect with the demand
of the other channel. So, the optimal inventory level of the other channel must be higher than
the level with which the vendor neglects effects of inventory levels.

b1 y∗1 y∗2 e1 e2 C D s∗1 s∗2

0.02 120.0838 45.0226 0.1310 0.0610 0.8360 0.2850 0.9393 0.8842

0.03 119.5479 44.7116 0.1315 0.0515 0.8390 0.2275 0.9396 0.8739

0.04 119.0199 44.3996 0.1320 0.0420 0.8420 0.1700 0.9398 0.8637

0.05 118.4998 44.0867 0.1325 0.0325 0.8450 0.1125 0.9401 0.8534

0.06 117.9876 43.7729 0.1330 0.0230 0.8480 0.0550 0.9403 0.8432

0.07 117.4833 43.4582 0.1335 0.0135 0.8510 −0.0025 0.9406 0.8329

0.08 116.9870 43.1426 0.1340 0.0040 0.8540 −0.0600 0.9408 0.8226

0.09 116.4987 42.8260 0.1345 −0.0055 0.8570 −0.1175 0.9411 0.8123

0.1 116.0185 42.5086 0.1350 −0.0150 0.8600 −0.1750 0.9413 0.8020

0.11 115.5464 42.1901 0.1355 −0.0245 0.8630 −0.2325 0.9416 0.7916

0.12 115.0824 41.8708 0.1360 −0.0340 0.8660 −0.2900 0.9418 0.7813

0.13 114.6265 41.5505 0.1365 −0.0435 0.8690 −0.3475 0.9421 0.7709

0.14 114.1789 41.2293 0.1370 −0.0530 0.8720 −0.4050 0.9423 0.7605

0.15 113.7394 40.9071 0.1375 −0.0625 0.8750 −0.4625 0.9426 0.7501

0.16 113.3083 40.5840 0.1380 −0.0720 0.8780 −0.5200 0.9428 0.7397

0.17 112.8854 40.2599 0.1385 −0.0815 0.8810 −0.5775 0.9431 0.7293

0.18 112.4709 39.9349 0.1390 −0.0910 0.8840 −0.6350 0.9433 0.7188

0.19 112.0647 39.6089 0.1395 −0.1005 0.8870 −0.6925 0.9435 0.7084

0.20 111.6670 39.2820 0.1400 −0.1100 0.8890 −0.7500 0.9438 0.6979

Table 1: Optimal inventory levels and service levels under different values of b1

We give a numerical example to compare optimal inventory levels respectively with and
without effects of inventory levels to demands. The parameters are as follows: a1 = 0.2,
b1 = 0.02 : 0.01 : 0.2, a2 = 0.05, b2 = 0.1, r1 = 10, r2 = 8, c1 = 4, c2 = 3, h1 = 2, h2 = 1,
l1 = 12, l2 = 6, γ = 0.9, M1 = 200, M2 = 100, ǫ1 is uniformly distributed on [50, 100], ǫ2
is uniformly distributed on [20, 50]. When the vendor neglects effects of inventory level, he
orders inventory up to levels y

′′

1 = 94.12 and y
′′

2 = 45 with corresponding service levels being
s
′′

1 = 0.8824 and s
′′

2 = 0.8333. The optimal inventory levels and service levels are represented
in Table 1.

Furthermore, we have the following three observations:

(1) With A = (r1−c1)(1−b2)−(r2−c2)a2 = 4.4 ≥ 0 and B = (r2−c2)(1−a1)−(r1−c1)b1 ≥
0, it is known that s∗1 increases with b1 and s∗2 decreases with b1. This is consistent with propo-
sition 2.
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(2) From Table 1, we can see that y∗1 ≥ y
′′

1 when y∗2 ≤ y
′′

2 . Moreover, y∗1 + y∗2 ≥ y
′′

1 + y
′′

2

always holds. These also demonstrate that conditions in Proposition 3 are sufficient conditions.

(3) From Table 1, we observe that the differences between y∗1 and y
′′

1 , y
∗
1 and y

′′

1 are very
large. If the vendor neglects the effects of inventory levels, the vendor may order as much as
21.6 percents lower than optimal for the physical store or 14.6 percents higher than optimal
for the online store. The vendor will lost a large proportion of profit if he neglects the effects
of inventory levels. So the effects of inventory levels are not negligible.

Discussions

Comparison between Centralized Control and Decentralized

Control

In the previous sections, the physical store and the online store are managed under retailer’s
centralized control. Another scenario is that dual channels are operated by separate organi-
zations. As Zhang et al. (2010) describes: “the channels may have different target markets
requiring unique merchandise and pricing. Due to these operational differences, many mul-
tichannel retailers have separate organizations for each channel and even outsource channel
management, which further increases the challenges in achieving demand synergies”. We call
this case decentralized control. When dual channels are operated by different organizations,
they will compete with each other through inventory. We denote the equilibrium of inventory
as y

′′′

1 and y
′′′

2 .
The profits of the two organizations in every period are given by:

−(r1 + l1)E[D1(y1, y2)− y1]
+ − (h1 − γc1)E[y1 −D1(y1, y2)]

+ + r1E[D1(y1, y2)]− c1y1

and

−((1−γ)r2+l2)E[D2(y1, y2)−y2]
+−h2E[y2−D2(y1, y2)]

++(r2−γc2)E[D2(y1, y2)]−c2(1−γ)y2

respectively. Then, it is not difficult to obtain:

y
′′′

1 =
(1 − b2)F

−1
1 ( l1

k1
+ r1−c1

(1−a1)k1
)− b1F

−1
2 ( l2−γ(r2−c2)

k2
+ r2−c2

(1−b2)k2
)

(1− a1)(1 − b2)− a2b1
, (27)

y
′′′

2 =
(1− a1)F

−1
2 ( l2−γ(r2−c2)

k2
+ r2−c2

(1−b2)k2
)− a2F

−1
1 ( l1

k1
+ r1−c1

(1−a1)k1
)

(1− a1)(1− b2)− a2b1
. (28)

Using the same parameter values as in the numerical example of the Properties section,
we compare y∗1, y

∗
2 with y

′′′

1 , y
′′′

2 under different values of b1 and list them in Table 2. We
observe that, vendors not always order higher under decentralized control; in most cases,
vendors tend to order more under decentralized control than under centralized control. This
phenomenon can be explained by the demand-stealing effect, that is, the higher the vendor
orders, the less the other channel demand is, so vendors tend to order more inventory under
decentralized control than under centralized control. When b1 is large (b1 ≥ 0.15), which
indicates competition is intense, we can see that y∗1 ≥ y

′′′

1 , y∗2 ≤ y
′′′

2 , so y∗1 − y∗2 ≥ y
′′′

1 − y
′′′

2 .
Hence, when competition between dual channels is intense, vendors will enlarge the distance
between the inventory levels of dual channels to reduce the competing effect under centralized
control. From table 2, we observe that vendors order as much as 17.7 percents higher for the
online store under decentralized control than under centralized control. So vendors should
think up mechanisms to coordinate dual channels when they belong to the same company.
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The Effect of Different Ways of Treating Unmet Demand

In the previous sections, we assume that unmet demand in the physical store is lost and in the
online store it is backlogged. Now, we investigate how different ways of treating unmet demand
affect optimal inventory levels of dual channels. The system is operated under centralized
control. We consider two other treatment mechanisms. One is that unmet demands in both
channels are lost (we call this lostsales case) and the other one is that unmet demands are
backlogged in both channels (we call this backorder case). Suppose that the optimal inventory
levels corresponding to these two cases are (y∗∗1 , y∗∗2 ) and (y∗∗∗1 , y∗∗∗2 ) respectively. Using the
same method as in the Properties section , we have

y∗∗1 =
(1− b2)F

−1
1 ( l1

k1
+ (r1−c1)(1−b2)−(r2−c2)a2

[(1−a1)(1−b2)−a2b1]k1
)− b1F

−1
2 ( l2

k
′

2

− (r1−c1)b1−(r2−c2)(1−a2)

[(1−a1)(1−b2)−a2b1]k
′

2

)

(1− a1)(1− b2)− a2b1
, (29)

y∗∗2 =
(1− a1)F

−1
2 ( l2

k
′

2

− (r1−c1)b1−(r2−c2)(1−a2)

[(1−a1)(1−b2)−a2b1]k
′

2

)− a2F
−1
1 ( l1

k1
+ (r1−c1)(1−b2)−(r2−c2)a2

[(1−a1)(1−b2)−a2b1]k1
)

(1− a1)(1− b2)− a2b1
, (30)

y∗∗∗1 =
(1− b2)F

−1
1 ( l1−γ(r1−c1)

k
′

1

+ (r1−c1)(1−b2)−(r2−c2)a2

[(1−a1)(1−b2)−a2b1]k
′

1

)− b1F
−1
2 ( l2−γ(r2−c2)

k2
− (r1−c1)b1−(r2−c2)(1−a2)

[(1−a1)(1−b2)−a2b1]k2
)

(1− a1)(1− b2)− a2b1
,

(31)

y∗∗∗2 =
(1− a1)F

−1
2 ( l2−γ(r2−c2)

k2
− (r1−c1)b1−(r2−c2)(1−a2)

[(1−a1)(1−b2)−a2b1]k2
)− a2F

−1
1 ( l1−γ(r1−c1)

k
′

1

+ (r1−c1)(1−b2)−(r2−c2)a2
[(1−a1)(1−b2)−a2b1]k

′

1

)

(1− a1)(1− b2)− a2b1
,

(32)

b1 y∗1 y
′′′

1 y∗2 y
′′′

1

0.02 120.0838 121.1015 45.0226 45.6463

0.03 119.5479 120.5297 44.7116 45.6781

0.04 119.0199 119.9572 44.3996 45.7099

0.05 118.4998 119.3838 44.0867 45.7417

0.06 117.9876 118.8096 43.7729 45.7736

0.07 117.4833 118.2347 43.4582 45.8056

0.08 116.9870 117.6589 43.1426 45.8376

0.09 116.4987 117.0823 42.8260 45.8696

0.1 116.0185 116.5049 42.5086 45.9017

0.11 115.5464 115.9268 42.1901 45.9338

0.12 115.0824 115.3478 41.8708 45.9660

0.13 114.6265 114.7679 41.5505 45.9982

0.14 114.1789 114.1873 41.2293 46.0304

0.15 113.7394 113.6059 40.9071 46.0627

0.16 113.3083 113.0236 40.5840 46.0951

0.17 112.8854 112.4406 40.2599 46.1275

0.18 112.4709 111.8567 39.9349 46.1599

0.19 112.0647 111.2720 39.6089 46.1924

0.20 111.6670 110.6864 39.2820 46.2249

Table 2: Optimal inventory levels under centralized control and decentralized control
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where k
′

1 = r1 + l1 + h1 − γc1 and k
′

2 = r2 + l2 + h2 − γc2. In (29) and (30), l1 and l2 denote
unit lostsales-penalty cost in dual channels respectively, while in formulations (31) and (32)
they represent unit penalty backorder-cost of dual channels respectively.

b1 y∗1 y∗∗1 y∗∗∗1 y∗2 y∗∗2 y∗∗∗2

0.02 120.0838 120.0334 116.8400 45.0226 47.0392 45.2028

0.03 119.5479 119.4656 116.3149 44.7116 46.9076 44.8912

0.04 119.0199 118.9011 115.7978 44.3996 46.7756 44.5786

0.05 118.4998 118.3400 115.2885 44.0867 46.6433 44.2651

0.06 117.9876 117.7823 114.7872 43.7729 46.5105 43.9507

0.07 117.4833 117.2279 114.2939 43.4582 46.3773 43.6354

0.08 116.9870 116.6769 113.8086 43.1426 46.2437 43.3192

0.09 116.4987 116.1293 113.3314 42.8260 46.1096 43.0020

0.1 116.0185 115.5852 112.8622 42.5086 45.9751 42.6839

0.11 115.5464 115.0445 112.4012 42.1901 45.8403 42.3649

0.12 115.0824 114.5073 111.9483 41.8708 45.7050 42.0449

0.13 114.6265 113.9735 111.5036 41.5505 45.5692 41.7240

0.14 114.1789 113.4432 111.0671 41.2293 45.4331 41.4022

0.15 113.7394 112.9164 110.6389 40.9071 45.2965 41.0794

0.16 113.3083 112.3932 110.2190 40.5840 45.1595 40.7556

0.17 112.8854 111.8735 109.8075 40.2599 45.0220 40.4309

0.18 112.4709 111.3573 109.4043 39.9349 44.8842 40.1053

0.19 112.0647 110.8447 109.0095 39.6089 44.7458 39.7787

0.20 111.6670 110.3357 108.6231 39.2820 44.6071 39.4511

Table 3: Optimal inventory levels under three different mechanism of treating unmet demand

From many numerical examples, we observe the following properties:

y∗1 ≥y∗∗1 ≥ y∗∗∗1

y∗∗2 ≥ y∗∗∗2 ≥ y∗2
(33)

Table 3 lists the result of an example. In this example the unit lostsales-penalty cost and
backorder-penalty cost in physical store are 12 and 8 respectively and in online store they
are 10 and 6 respectively. Other parameters are the same as in the numerical example in the
Properties section. Optimal inventory levels under lostsales case are always higher than those
under backorder case. This can be explained as follows: because unmet demand under the
backorder case can be satisfied in the next period, the vendor sets lower inventory levels for
dual channels compared to the lostsales case to reduce the competing effect of inventory levels.

When unmet demand in physical store is lost and in online store it is backlogged, the vendor
raises up inventory level of physical store and reduces inventory level of online store compared
to the lostsales case and backorder case. This is because unmet demand in physical store will
be lost and in online store it will be satisfied in the next period, so the vendor provides a
higher service level in the physical store and decreases service level of online store properly to
reduce its competing effect with physical store.
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Conclusion

In this paper, we study the inventory policy of a vendor operating dual sales channels. De-
mands of dual channels are inventory-level-dependent, increasing with inventory level of its
own channel and decreasing with inventory level of the other channel. We prove that the
myopic inventory policy is optimal for the infinite horizon problem. When the initial invento-
ries of dual channels in the first period are zero, we can simplify the infinite horizon problem
into a single period problem and obtain formulations of the optimal inventory levels of dual
channels. So it is easy for us to investigate the impact of inventory-level-dependent demand
on the optimal inventory levels and the optimal service levels of dual channels. We also con-
sider the case where the vendor neglects the effects of inventory levels and compare inventory
levels in this case with the optimal levels. Through numerical examples, we show that the
difference of the optimal inventory levels of dual channels in the two cases may be very large,
so the vendor may lost a large proportion of profit if he neglects effects of inventory levels.
For a more in-depth discussion, we compare the optimal inventory levels under decentralized
control and centralized control. Through numerical examples, we find that when inventory
competition is weak, vendors tend to order more under decentralized control and when compe-
tition is intense, vendors will enlarge the distance of inventory levels between dual channels to
reduce competition under centralized control; the difference between the optimal levels under
centralized control and decentralized control may be very large and the vendors should think
up mechanisms to integrate dual channels. After that, we investigate how different ways of
treating unmet demand affect optimal inventory levels, and find that optimal inventory lev-
els under lostsales case are always higher than those under backorder case and the difference
between inventory levels of dual channels is the largest when unmet demand in the physical
store is lost and in online store is backlogged.

There are three directions for future research. First, demands of dual channels are inventory-
level-dependent in our paper, linearly increasing with inventory level of its own channel and
linearly decreasing with inventory level of the other channel. Nonlinear types of inventory-
level-dependent demand models may be also considered in multi-channel inventory problem.
Second, in this paper, the vendor’s inventory decision only affects demand in current period.
But the decision in one period may affect demands thereafter. Azadivar et al. (2010) consider
the discrete multi-period dynamic inventory control problem where customers follow a sim-
ple satisfaction-based demand process; the probability of demand depends on whether their
demand was satisfied last time. Popescu and Wu (2007) study dynamic pricing problem of
a monopolist firm in a market with repeated interactions, where demand is sensitive to the
firm’s pricing history. So, as one of future directions, we can consider models in which demand
depends on firm’s inventory on history. More reasonably, demand depends on firm’s service
level on history. Third, analysis of a system with setup cost is also valuable.
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APPENDIX

Proof of Theorem 1.
We prove this theorem by induction on t. It holds obviously when t = T + 1. Suppose it

holds for t = k+1, i.e., Vk+1(x1, x2) is concave and decreasing in x1 and x2. We need to show
that Vk(x1, x2) is concave and decreasing in x1 and x2.

It is easy to see that the decision space {x1 ≤ y1 ≤ M1, x
+
2 ≤ y2 ≤ M2} is a convex set. So,

it suffices, by lemma 1, to show Hk(y1, y2) is concave in y1 and y2. Substituting expressions of
D1(y1, y2) and D2(y1, y2), i.e., equations (1) and (2), into C(y1, y2), we can prove that every
item in C(y1, y2) is concave. Hence, C(y1, y2) is concave.

Now, we prove the concavity of EVk+1([y1 − D1(y1, y2)]
+, y2 − D2(y1, y2)). We just need

to show that Vk+1([y1 −D1(y1, y2)]
+, y2 −D2(y1, y2)) is concave in y1 and y2 for given ǫ1 and

ǫ2 because expectation is a convex combination. Substituting (1) and (2) into Vk+1([y1 −
D1(y1, y2)]

+, y2 −D2(y1, y2)) leads to

Vk+1([y1−D1(y1, y2)]
+, y2−D2(y1, y2)) = Vk+1(((1−a1)y1+b1y2−ǫ1)

+, a2y1+(1−b2)y2−ǫ2).

Suppose that λ is a number between 0 and 1, y1, y2, y
′

1, y
′

2 are random numbers. We have

Vk+1([(1− a1)(λy1 + (1− λ)y
′

1) + b1(λy2 + (1− λ)y
′

2)− ǫ1]
+,

a2(λy1 + (1− λ)y
′

1) + (1− b2)(λy2 + (1− λ)y
′

2)− ǫ2)

=Vk+1([λ((1 − a1)y1 + b1y2 − ǫ1) + (1− λ)((1 − a1)y
′

1 + b1y
′

2 − ǫ2)]
+,

λ(a2y1 + (1− b2)y2 − ǫ2) + (1− λ)(a2y
′

1 + (1− b2)y
′

2 − ǫ2))

≥Vk+1(λ((1 − a1)y1 + b1y2 − ǫ1)
+ + (1− λ)((1− a1)y

′

1 + b1y
′

2 − ǫ1)
+,

λ(a2y1 + (1− b2)y2 − ǫ2) + (1− λ)(a2y
′

1 + (1− b2)y
′

2 − ǫ2))

≥λVk+1(((1 − a1)y1 + b1y2 − ǫ1)
+, a2y1 + (1− b2)y2 − ǫ2)

+ (1− λ)Vk+1(((1 − a1)y
′

1 + b1y
′

2 − ǫ1)
+, a2y

′

1 + (1− b2)y
′

2 − ǫ2).

The first inequality holds because Vk+1(x1, x2) is decreasing in x1. The second inequality
holds because of the concavity of Vk+1(x1, x2). Consequently, EVk+1([y1 −D1(y1, y2)]

+, y2 −
D2(y1, y2)) is concave in y1 and y2. Hence, all items in Hk(y1, y2) are concave, and by lemma
1, we conclude that Vk(x1, x2) is concave in x1 and x2. On the other hand, as x1 and x2
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increase, the decision space {x1 ≤ y1 ≤ M1, x
+
2 ≤ y2 ≤ M2} diminishes. Thus, it is clear that

Vk(x1, x2) is decreasing in x1 and x2.
Proof of Lemma 2.
Denote k1 = r1 + l1 + h1 − γc1, k2 = (1 − γ)r2 + l2 + h2, f1 and f2 are the probability

density functions of ǫ1 and ǫ2 respectively.

∂2

∂y21
C+(y1, y2) = − (1− a1)

2e1f1((1 − a1)y1 + b1y2)− a22e2f2(a2y1 + (1− b2)y2) ≤ 0,

∂2

∂y22
C+(y1, y2) = − b21k1f1((1− a1)y1 + b1y2)− (1− b2)

2k2f2(a2y1 + (1− b2)y2) ≤ 0,

∂2

∂y1∂y2
C+(y1, y2) = C+

21(y1, y2) = −(1− a1)b1k1f1((1 − a1)y1 + b1y2)

− a2(1− b2)k2f2(a2y1 + (1− b2)y2) ≤ 0.

(34)

So,

∂2

∂y21
C+(y1, y2)

∂2

∂y22
C+(y1, y2)− (

∂2

∂y1∂y2
C+(y1, y2))

2

= (1− a1 − b2 + a1b2 − a2b1)
2k1k2f1((1− a1)y1 + b1y2)f2(a2y1 + (1− b2)y2)) ≥ 0.

(35)

Proof of Lemma 3.
We prove this lemma according to Ignall and Veinott (1969). We have obtained in the

proof of Lemma 2 that

∂2

∂y21
C+(y1, y2)

∂2

∂y22
C+(y1, y2)− (

∂2

∂y1∂y2
C+(y1, y2))

2

= (1− a1 − b2 + a1b2 − a2b1)
2k1k2f1((1− a1)y1 + b1y2)f2(a2y1 + (1− b2)y2)) ≥ 0.

(36)

When we order inventories up to y1 and y2 for dual channels, (1 − a1)y1 + b1y2 = y1 −
(a1y1 − b1y2) can be interpreted as the part used to satisfy demand of loyal customers of the
physical store. So inequalities v1 ≤ (1 − a1)y1 + b1y2 ≤ u1 and v2 ≤ a2y1 + (1 − b2)y2) ≤ u2
hold in the optimal policy. Thus, we can restrict our decision space to {(y1, y2) : v1 ≤ (1 −
a1)y1 + b1y2 ≤ u1, v2 ≤ a2y1 + (1 − b2)y2) ≤ u2, 0 ≤ y1 ≤ M1, 0 ≤ y2 ≤ M2}. Because F1

and F2 are strictly increasing, f1 is larger than zero on [v1, u1] and f2 is larger than zero on
[v2, u2]. As a result, as long as 1− a1 − b2 + a1b2 − a2b1 6= 0, C+(y1, y2) is strictly concave on
{(y1, y2) : v1 ≤ (1− a1)y1 + b1y2 ≤ u1, v2 ≤ a2y1 + (1− b2)y2) ≤ u2}. So y∗ is unique.

Proof of Lemma 4. For simplicity, we denote C+
1 (y1, y2) as taking derivative with the first

component that is y1 of C
+(y1, y2). C

+
2 (y1, y2), C

+
12(y1, y2), C

+
21(y1, y2), C

+
11(y1, y2), C

+
22(y1, y2)

all have similar meanings.
According to the definition of z2(x1), we have

C+
2 (x1, z2(x1)) = 0 (37)

Taking derivative of the two sides of equation (37) with respect to x1, we have: C
+
21(x1, z2(x1))+

z
′

2(x1)C
+
22(x1, z2(x1)) = 0. Because C+(y1, y2) is concave, so C+

22(x1, z2(x1)) ≤ 0 for arbitrary
x and y. According to lemma 2, C+

21(x1, z2(x1)) ≤ 0, so z
′

2(x1) ≤ 0. Similarly, z
′

1(x2) ≤ 0.
Proof of Theorem 2.
We have showed that as long as 1−a1 − b2+a1b2−a2b1 6= 0, C+(y1, y2) is strictly concave

on {(y1, y2) : v1 ≤ (1 − a1)y1 + b1y2 ≤ u1, v2 ≤ a2y1 + (1 − b2)y2) ≤ u2} in Lemma 3. So
ȳ(x1, x2) has the substitute property.
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According to lemma 5 in Ignall and Veinott (1969), ȳ(x1, x2) is the myopic policy. Refer to
lemma 5 and theorem 4 in Ignall and Veinott (1969), the myopic inventory policy is optimal
in infinite horizon problem.

Proof of Proposition 1.
Take derivative of y

′

1 and y
′

2 with respect to a1, b1, a2 and b2 respectively.

∂

∂a1
y
′

1 =
A[ (1−b2)2

k1
(F−1

1 )
′

(D) +
b2
1

k2
(F−1

2 )
′

(E)] + (1− b2)C[(1 − b2)F
−1
1 (D)− b1F

−1
2 (E)]

C3

∂

∂a1
y
′

2 =
−A[a2(1−b2)

k1
(F−1

1 )
′

(D) + b1(1−a1)
k2

(F−1
2 )

′

(E)] − a2C[(1− b2)F
−1
1 (D)− b1F

−1
2 (E)]

C3

∂

∂b2
y
′

1 =
−B[a2(1−b2)

k1
(F−1

1 )
′

(D) + (1−a1)b1
k2

(F−1
2 )

′

(E)]− b1C[(1− a1)F
−1
2 (E)− a2F

−1
1 (D)]

C3

∂

∂b2
y
′

2 =
B[ (a2)

2

k1
(F−1

1 )
′

(D) + (1−a1)2

k2
(F−1

2 )
′

(E)] + (1− a1)C[(1− a1)F
−1
2 (E)− a2F

−1
1 (D)]

C3

where,

D =
l1

k1
+

(r1 − c1)(1 − b2)− (r2 − c2)a2
[(1 − a1)(1− b2)− a2b1]k1

E =
l2 − γ(r2 − c2)

k2
−

(r1 − c1)b1 − (r2 − c2)(1 − a1)

[(1− a1)(1− b2)− a2b1]k2

Proof of Proposition 3.
Now, suppose y∗2 ≤ y

′′

2 , we prove y∗1 ≥ y
′′

1 . Denote

E1 =
l1

k1
+

(r1 − c1)(1− b2)− (r2 − c2)a2
[(1− a1)(1− b2)− a2b1]k1

E2 =
l2 − γ(r2 − c2)

k2
−

(r1 − c1)b1 − (r2 − c2)(1 − a1)

[(1− a1)(1− b2)− a2b1]k2

So

y∗1 =
(1− b2)F

−1
1 (E1)− b1F

−1
2 (E2)

(1− a1)(1 − b2)− a2b1
,

y∗2 =
(1− a1)F

−1
2 (E2)− a2F

−1
1 (E1)

(1− a1)(1 − b2)− a2b1
.

y∗2 − y
′′

2 =
(1− a1)F

−1
2 (E2)− a2F

−1
1 (E1)

(1− a1)(1− b2)− a2b1
− F−1

2 (
(1 − γ)(r2 − c2) + l2

k2
)

=
(1− a1)F

−1
2 (E2)− a2F

−1
1 (E1)− [(1− a1)(1− b2)− a2b1]F

−1
2 ( (1−γ)(r2−c2)+l2

k2
)

(1− a1)(1 − b2)− a2b1

Because (1− a1)(1 − b2)− a2b1 ≥ 0,

(1− a1)F
−1
2 (E2)− a2F

−1
1 (E1)− [(1 − a1)(1− b2)− a2b1]F

−1
2 (

(1− γ)(r2 − c2) + l2

k2
) ≤ 0

BecauseD ≥ 0, soE2−
(1−γ)(r2−c2)+l2

k2
≥ 0. As F−1

2 is increasing, F−1
2 (E2)−F−1

2 ( (1−γ)(r2−c2)+l2
k2

) ≥
0. So

[(1− a1)b2 + a2b1]F
−1
2 (E2)− a2F

−1
1 (E1)

≤ (1− a1)F
−1
2 (E2)− [(1− a1)(1 − b2)− a2b1]F

−1
2 (

(1− γ)(r2 − c2) + l2

k2
)− a2F

−1
1 (E1)

≤ 0
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Now, we prove y∗1 − y
′′

1 ≥ 0.

y∗1 − y
′′

1 =
(1− b2)F

−1
1 (E1)− b1F

−1
2 (E2)

(1− a1)(1 − b2)− a2b1
− F−1

1 (
r1 − c1 + l1

k1
)

=
(1− b2)F

−1
1 (E1)− b1F

−1
2 (E2)− [(1− a1)(1− b2)− a2b1]F

−1
1 ( r1−c1+l1

k1
)

(1− a1)(1 − b2)− a2b1

Because C ≥ 0, F−1
1 (E1) ≥ F−1

1 ( r1−c1+l1
k1

). So, y∗1 − y
′′

1 ≥
[(1−b2)a1+a2b1]F

−1

1
(E1)−b1F

−1

2
(E2)

(1−a1)(1−b2)−a2b1
.

In which,

[(1− b2)a1 + a2b1]F
−1
1 (E1)− b1F

−1
2 (E2)

= −
b1

(1− a1)b2 + a2b1
[((1 − a1)b2 + a2b1)F

−1
2 (E2)− a2F

−1
1 (E1)]

+ [((1 − b2)a1 + a2b1)−
a2b1

(1− a1)b2 + a2b1
]F−1

1 (E1)

= −
b1

(1− a1)b2 + a2b1
[((1 − a1)b2 + a2b1)F

−1
2 (E2)− a2F

−1
1 (E1)]

+
[(1− a1)b2 + a2b1][(1 − b2)a1 + a2b1]− a2b1

(1− a1)b2 + a2b1
F−1
1 (E1)

The first item is larger than zero. Now, we need to show the second item is larger than
zero. It suffices to show that [(1 − a1)b2 + a2b1][(1− b2)a1 + a2b1]− a2b1 is larger than zero.

[(1 − a1)b2 + a2b1][(1− b2)a1 + a2b1]− a2b1

= (1− a1)(1− b2)a1b2 + (a2b1)
2 + (1− a1)a2b1b2 + (1− b2)a1a2b1 − a2b1

= [(1− a1)b2 + (1− b2)a1]a2b1 − (1− a2b1)a2b1 + (1− a1)(1 − b2)a1b2

= a2b1(a2b1 − a1b2) + (1− a1)(1− b2)(a1b2 − a2b1)

= [(1− a1)(1 − b2)− a2b1](a1b2 − a2b1)

(38)

In which,
(1− a1)(1− b2)− a2b1 = (1− a1 − b2) + (a1b2 − a2b1) ≥ 0 (39)

The above inequality holds because a1 + b2 ≤ 1, a1 ≥ b1 and b2 ≥ a2. Until now, we have
proved y∗1 ≥ y

′′

1 . Similarly, when y∗1 ≤ y
′′

1 , y
∗
2 ≥ y

′′

1 .
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