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Abstract 

Extant studies of cooperative advertising mainly consider a single-manufacturer-single-retailer 

channel structure. This can provide limited insights, because a manufacturer, in real practices, would 

frequently deal with multiple retailers at the same time. In order to examine the impact of the retailer’s 

multiplicity on channel members’ decisions and total channel efficiencies, this paper develops a 

multiple-retailer model. In this model, the manufacturer and the retailers play the Stackelberg game to 

make optimal advertising decisions. Based on the quantitative results, it is observed that: 1) When there are 

multiple symmetric retailers, as the number of retailers scales up, the manufacturer’s national advertising 

investment contributes increasingly to add to channel members’ profits, but the total channel efficiency 

deteriorates; 2) When there are multiple asymmetric retailers, the distribution channel suffers from the 

manufacturer’s uniform participation strategy due to the retailer’s free-ride, and benefits with the 

manufacturer’s retailer-specific participation strategy. This study derives equilibrium solutions for all 

games studied in closed form, and explicitly measures the gains/losses of channel efficiencies under 

different game settings.  

Keywords: cooperative advertising, game theory, multiple retailers, scaling effect, free-riding 

 

1. Introduction 

In a typical distribution channel, the manufacturer usually makes its advertising via the national wide 

media so as to build up its long-term brand image and enlarge its potential client bases. In contrast, the 

retailer tends to make local advertising campaigns which focus more on the short-term sales effect. The 

discrepancy of two types of advertising is presumed of a magnitude sufficiency to create a role for 

cooperative (co-op) advertising. Co-op advertising is, practically, an interactive relationship between a 

manufacturer and a retailer in which the manufacturer pays a portion of the retailer’s local advertising costs; 

The fraction shared by the manufacturer is commonly referred to as the manufacturer’s participation rate. 

Co-op advertising offers consumers the information needed when they move through the final stages of 

purchase and a congruence of information and information needs that would be impossible if the 

manufacturer uses national advertising only (Huang & Li, 2001).  

Co-op advertising prevails in today’s marketing practices. It is reported that GE’s budgets for local 

advertising are three times as high as its national advertising budget (Young & Greyser, 1983). Intel’s 

expenditure on co-op advertising grows from $800 million in 1999 to $1.5 billion in 2001 (Elkin, 1999). In 

1987, the estimated co-op advertising expenditure spent by the US companies amounted to $10 billion 

(Somers et al., 1990). In 1993, 20 billion is used for co-op advertising (Davis, 1994). According to Nagler 

(2006), the total US expenditure of co-op advertising in 2000 is estimated at $15 billion, nearly a four-fold 

increase in real terms in comparison with $900 million in 1970. 

Increasing spending volumes and high levels of participation rate in co-op advertising have motivated 

theoretical studies to explore a most effective scheme for channel members to participate in. Lyon’s (1932) 

discuss of the advertising allowances – money paid by a manufacturer to a dealer to cover a part of dealer’s 
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advertising expenses – provides what may have been the first formal, albeit qualitative treatment of the 

subject of co-op advertising. Following Lyon’s seminal work, studies of co-op advertising, including both 

empirical investigations and analytical modeling works, never stop, thereafter, for the past eight decades. 

Our study follows the analytical modeling approach.  

Regarding analytical modeling techniques, game theoretical models have been most widely used in 

co-op advertising researches. In particular, they are used to model the inherent inter-dependence and 

conflicts among channel members, and how the co-op advertising decisions, as well as channel 

performance is influenced by the various factors, such as advertising efforts at national and local levels, the 

participation rate, sales volumes, brand and store substitutions, pricing, among others. For an extensive 

survey of the game theoretical models in co-op advertising, one can refer to Taboubi & Zaccour (2005). 

We briefly review the co-op advertising literature related to the dynamic and static games, respectively. A 

dynamic game takes a long-term perspective over several (or infinite) time periods (e.g., Kim & Stealin, 

1999; Jorgensen et al., 2000; Taboubi & Zaccour, 2002; Jorgensen & Zaccour, 2003; He et al., 2009). 

Customer demand is usually assumed to be based on a goodwill stock that is influenced by advertising in 

the current and previous periods (Nerlove & Arrow, 1962; Chintagunta & Jain, 1992). Investments on the 

goodwill stock are therefore considered to have the “carryover” effect from one period to the next. 

However, a common problem with the dynamic game models is that closed-form solutions are usually not 

available without significant model simplifications. On the other hand, static game analyzes the co-op 

advertising in a single-period (e.g., Berger, 1972; Dant & Berger, 1996; Berger & Magliozzi, 1992; Bergen 

& John, 1997; Huang & Li, 2001; Yue et al., 2006; Szmerekovsky & Zhang, 2009; Xie & Wei, 2009). One 

common assumption is that the game is played only once, and the brand-name investments, the local 

advertising spending, as well as player’s participation strategies are all assumed to be time-invariant. Static 

game models are convenient tools to develop analytical solutions and to generate insights related to the key 

elements of the game structure, including advertising expenditures, participation rates, and channel 

efficiencies, so we choose to use static game models in this paper. 

We note that all static analytical models mentioned above consider a single-retailer channel structure, 

which has several limitations: 1) It is unable to study the retailer’s multiplicity and its impact, e.g., scaling 

effect; 2) It does not capture the universal impact of the manufacturer’s brand-name advertising, which, 

once implemented, will benefit all resellers equally who sell products under the brand-name; 3) It fails to 

capture the impact of different retailers’ attributes (i.e., profit margins, market sizes, etc.) on their co-op 

advertising decisions. Although marketing practices suggest that the manufacturer would often times deal 

with multiple retailers, existing literature of co-op advertising with multiple retailers is sparse. Karray & 

Zaccour (2007) considers a distribution channel consisting of two manufacturers and two retailers. The 

retailers choose their levels of marketing efforts (e.g., local advertising, displays, etc.) and the 

manufacturers control their participation rates for the retailers’ marketing efforts if the co-op advertising 

program is an option. However, the national advertising efforts are specified as exogenous parameters 

instead of manufacturer’s decision variables.  

To the best of our knowledge, this study is among the first to develop a game theoretical model with 

multiple retailers. The main contribution is that it explicitly derives and quantitatively measures the 

impacts of the retailer’s multiplicity on channel members’ optimal decisions and on total channel 

efficiencies. Managerial insights can be summarized in the following two perspectives: When there are 

multiple symmetric retailers, we identify scaling effects on channel members’ profits and the total channel 

efficiencies. Specifically, as the number of retailers scales up, the manufacturer’s national advertising 

investment contributes increasingly to add to channel members’ profits. Although the total channel 

efficiency may increase with the local advertising effectiveness and/or the manufacturer’s relative channel 

power, it deteriorates quickly as the number of retailer scales up. When the retailers are asymmetric, we 

study how the different local market attributes and the manufacturer’s uniform participation constraint 

affect the manufacturer’s optimal participation strategy and the system’s efficiency. It is observed that: 1) 

The manufacturer’s uniform participation strategy can be inefficient due to the retailer’s free-riding. 

Specifically, the manufacturer’s uniform subsidy tends to be insufficient with retailers of larger market size 

and lower profit margins, and excessive with retailers of smaller market size and higher profit margin, 

giving the latter a free-ride; 2) In order to prevent the retailer’s free-ride, the manufacturer can use the 

retailer-specific participation strategy, which suggests the manufacturer’s participation rate with retailers of 

smaller market size and higher profit margin should be less generous than that of larger market size and 

lower profit margin.  
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This paper is organized as follows: Section 2 presents the model framework. Section 3-4 investigates 

impacts of the retailer’s multiplicity when there are multiple symmetric/asymmetric retailers. Section 5 

summarizes the findings and proposes directions for future research. 

2. Model framework 

Consider a distribution channel with one manufacturer M selling a certain product through n retailers 
R1, R2, …, Rn. Assume that different retailers are geographically separated and that cross-border products 

transferring is prohibited, so there are no intra-brand competitions. This assumption captures the real 

situation when a manufacturer’s marketing channels are widespread, with each reseller being authorized as 

the sole representative of its local marketing area and making advertising and pricing decisions 

independently. As far as we know, some Chinese manufacturers of Electronic Instrument follow this way. 

They designate a first-class sales agent who is, headquartered in some first-tier city, fully in charge of the 

sales and serves in the city and the surrounding areas (e.g., Beijing for the North-China area, 

Shanghai/Guangzhou for the East-China area, ect.). Although geographically separated, the retailers 

benefit equally from the national advertising (e.g., brand-image advertising on national TV channels) 

because they carry the same products under the manufacturer’s brand-name.  

Our study mainly focuses on channel members’ advertising decisions. So we do not take directly 

pricing decisions into account, instead, we assume a fixed gross unit margin (advertising costs excluded) 

for channel members. Let M’s gross profit margin be ρ0 and Ri’s be ρi, i=1, 2, …, n. Fixed margins can be 

justified with a short-run planning horizon. Similar assumptions are also used by Jorgensen et al. (2000) 

and Sigue & Chintagunta (2008).  

Let a0 and ai, i=1, 2, …, n, be M’s and Ri’s advertising spendings, respectively. We assume the 

resulting customer demand for retailer Ri, Si = Si (a0, ai), often called the sales response function, is jointly 

determined by both the national advertising spending a0 and local advertising spending ai. There is a 

substantial literature on the estimation of the sales response function with respect to advertising 

investments. Following (Xie & Wei, 2009) we use 

              )(),( 00 iiiiii akabaaS   , i=1, 2, …, n,                  (1) 

where 0i  is the demand base with respect to zero advertising input, 0ik  is the relative 

effectiveness of the local advertising compared with the national advertising, and 0ib  is the market 

size. To obtain a better understanding of Si(a0, ai), we suggest take )( 0 iii aka   as the average 

demand of a typical customer within Ri’s marketing area and bi the population size. We assume further 

  n...1
 and kkk n  ...1  to imply that a typical customer’s average demand level is 

much the same in all local markets. Then the n local markets are primarily differentiated by the population 

size within the marketing areas. Technically, there are no difficulties to extend the model by considering 

i  and ki being dependent with the retailer’s index i. However, the assumption of a uniform   and k can 

help us to better focus on the key parameter of bi, which we will use in this paper to distinguish large 

retailers from small retailers. Finally, for simplicity of our discussion, we normalize 0 . Note that   

is not the retailer’s decision variable; Instead, it is only a constant parameter, not coupling with any 

decision variables. So normalizing 0  will not affect the equilibrium outcome regarding channel 

members’ optimal decisions. Then Ri’s sales response function is specified as 

)(),( 00 iiii akabaaS  .                            (2) 

Obviously, Si(a0, ai) is continuously differentiable, strictly increasing, and strictly (joint) concave with 

respect to (a0, ai). The square root formulation also reflects the commonly observed “advertising saturation 

effect,” i.e., additional advertising spending generates continuously diminishing returns, which has been 

verified and supported by Simon & Arndt (1980) based on their review of over 100 case studies. 

To implement co-op advertising, let M shares a portion ]1 ,0[it  of Ri’s local advertising cost ai. 
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Let ),...,,(: 21 naaaa  and ),...,,(: 21 ntttt , then profits for M, Ri, i=1, 2, …, n, and the whole 

distribution channel are: 
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All throughout this paper, we use subscripts “0”, “i” (i=1, 2, …, n), and “S” to mark the parameters 

corresponding to M, Ri, and the whole channel system.  

3. Scaling effect with multiple homogeneous retailers 

Suppose the n retailers in the distribution channel are homogeneous. Without loss of generality, let all 

retailers be identical with R1, then 1bbi  , 1 i , for all i=2, 3, …, n.  

3.1. Benchmark case — centralized channel 

Following Equation (5), the total channel profit can be written as 
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Please note that ),( 0 aaS  is a strict (jointly) concave function with respect to ),( 0 aa . To see this 

point, one can simply check the Hessian of ),( 0 aaS  being negative-defined. By definition, 

)()(2
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Thus, )(2

S  is negative, so ),( 0 aaS  has a unique global optimal point, which can be solved from 

the first order condition 0 S . Denote the optimal point by (
Ca0 , 

Ca ) := (
Ca0 , 

Ca1 , …, 
C

na ).  

Proposition 1. With n symmetric retailers in the distribution channel the centralized solution that 
maximizes the total channel profit is given by 
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  nba C ,                               (7) 
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i
, i=1, 2, …, n.                     (8) 

Hereafter in this paper, we will use “C” to mark centralized solutions, and the upper-bar “ ” to mark 

equilibrium outcomes corresponding to the n-symmetric-retailer case. 

Note that )( 10    represents the whole channel’s gross margin for each unit sales. Then, 

Equations (7)-(8) suggest that the optimal levels for national/local advertising expenditures should be 

proportional to the squared value of the channel’s gross margin scaled by the market size, i.e., 

 2101 )(  b . What’s different, M’s optimal advertising level 
Ca0  is increasing in n, whereas, Ri’s 

optimal advertising level 
C

ia  stays constant with n. Substitute  (
Ca0 , 

Ca ) into Equation (6), we obtain 

the optimal channel profit by 
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Referring to Equations (7)-(8), we can actually interpret Equation (9) in the following way: 
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Ca0 , which reveals 

that, the optimal centralized channel profit 
C

S  consists of two parts: one is M’s optimal national 

advertising expense 
Ca0 , the other is obtained by adding up all retailers’ optimal local advertising 

expenses 
Can 1 . Since 

Ca0 /
Can 1 = n/k

2
 increases in n, we conclude that the national advertising’s relative 

contribution to total channel profit increases with n. 

Insight 1. In a centralized channel, as the retailers’ number scales up, the national advertising plays an 
increasingly prominent role in terms of generating profits for the whole distribution channel.  

3.2. Decentralized channel 

For the decentralized channel, we model channel members’ decision process as a two-stage 

Stackelberg game. In the first stage, M decides its national advertising expenditure a0 and participation 

rates ti, i=1, 2, …, n, and in the second stage, Ri simultaneously chooses its local advertising level ai, i=1, 

2, …, n, accordingly. Due to the symmetry of the model, let M’s participation rates ti with Ri, i=1, 2, …, n 

all be identical with t1, then players’ profit functions are reduced to 
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Note that at the second stage of the game, given a0 and t1, Ri’s simultaneous move generates a Nash 

Equilibrium. To deal with the Nash Equilibrium, one should always discuss its existence and uniqueness. 

Fortunately, for the current model studied, both the existence and the uniqueness of the Nash Equilibrium 

are guaranteed. For existence, we use Topkis’s (1979) argument of the supermodular game as the 

sufficient condition (Because 0/2  jii aa  for all ij  , i=1, 2, …, n, then the game is always a 

supermodular game). For uniqueness, we refer to Moulin’s (1986) statement, which requires that the slope 

of each player’s best responses never exceed 1 in absolute value. In our model, the condition 
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Lemma 1. Given M’s decision of a0 and t1, the retailers’ simultaneous move generates a unique Nash 
equilibrium, which can be explicitly expressed as 
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Because 0/ 1

*  tai , then a higher level of M’s participation rate t1 induces a higher level of Ri’s 

local advertising input in equilibrium.  

Proposition 2. On condition that 12
1

0   †
, the unique sub-game perfect equilibrium solution for the 

Stackelberg game is given by 

                                                        
†
 When 

12
1

0   , M’s optimal participation rate will be zero, i.e., M chooses not to participation into the 

retailers’ local advertising. Similar arguments apply to Proposition 4 and 5 analogously. 
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Hereafter in this paper, we will use the superscript “D” to notify all equilibrium solutions and the 

associated items with a decentralized channel. 

Equation (15) reveals that M’s optimal participation rate ]1 ,0[1 Dt  is only dependent with channel 

members’ gross margins: It is increasing in 0  and decreasing in 1 . Please note that the ratio i0 /   

represents M’s relative channel power against Ri, and the kink point 1/2 is the retailer’s local 

advertising-demand elasticity in absolute value (
2
1/)/log(  iii aaS ), therefore, condition 12

1
0    

is equivalent to saying that M’s relative channel power is larger than or equals to the retailer’s 

advertising-demand elasticity in absolute value. We assume this condition hold all through this section.  

Compare Equations (13)-(14) with (7)-(8), we obtain similar observations as in Section 3.1: 1) Ri’s 

optimal advertising cost 
Da1  is independent with n; 2) M’s optimal advertising investment 

Da0  is 

proportional to n
2
, therefore, will increase quickly as the number of retailers scales up. Substitute (13)-(14) 

into (10)-(11), we get M’s and Ri’s profits as:  
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Equations (16) can be reformed as   2
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suggests us to count M’s optimal profit by two parts: one is M’s own advertising investment 
Da0  at the 

national level, the other is the sum of all its retailers’ advertising expenses 
Dan 1  at the local level. Since 

Da0 /
Dan 1  increases in n, we conclude that the national advertising’s relative contribution to M’s profit 

increases with n. Similarly, Equation (17) can be reformed as  naa DDD

i 01   , i=1, 2, …, n, 

being a linear combination of Ri’s optimal local advertising spending 
Da1  and the average spending of 

M’s optimal national advertising,  na D

0 , where )2/(2 101   , 
01 /2   . While 

Da1  is 

constant with n,   2

1

2

04
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0 bnna D   is increasing with n. Therefore, M’s national advertising spending 

increasingly contributes to add to Ri’s profit as the retailer’s number scales up.  

Insight 2. The manufacturer’s national advertising conducts a universal impact in generating channel 

members’ profits: It helps generate sales in all local markets that carry products under its brand-name. As 
the retailer’s number scales up, it contributes increasingly to add profits to both the manufacturer and the 

retailers.  

In general, the channel profit based on decentralized decisions (13)-(15) will be less than that based 

on centralized decisions (7)-(8). To quantitatively measure the system efficiency under the current 

decentralized system, we introduce the ratio ]1 ,0[  as the (optimal) channel profit under the 

decentralized game setting over that under the centralized game setting. For example, we will use 
C

S

D

S  /:  to measure the channel efficiency for the decentralized game setting with multiple 

symmetric retailers, in which 
D

S  is obtained by adding all members’ profits: 
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Proposition 3. The system efficiency of the current decentralized game setting is 
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which has the following properties: 

(i)  For any given 10  ,   and k,   is a convex decreasing function of n, and 

2

10100 )/()2(lim  
n

 

(ii) For any given n,   increases with k and 
10 /  . The efficiency bound is estimated by 

 1 ,
9
5 . When k=0 and 12

1
0   ,   gets its lower bound 5/9; when 0 ,   gets 

its upper bound 1. 

Since the ratio 0/  i , i=1, 2 represents retailer Ri’s relative channel power. Proposition 3 states that a 

strict Pareto improvement bilateral participation scheme is guaranteed as long as the retailer’s average 

channel power is greater or equals to the manufacturer’s. Recall that big manufacturers used to have more 

channel power than retailers before the early 1980’s. Manufacturers such as Procter&Gamble (P&G) limited 

the quantities of high-demand products they would deliver to a given supermarket chain and insisted that the 

supermarket carry all sizes of a certain product (Huang et al. 2002). However, things changed ever since the 

middle 1980’s with a market trend in which the retailers began to retain equal or even more powers 

(Achenbaum and Mitchel 1987; Buzzell et al. 1990; Kumar 1996;). 

According to (ii) of Proposition 3,   increases as the local advertising’s relative effectiveness (k) gets 

higher and/or the manufacturer’s relative channel power (
10 /  ) gets larger. However, as shown by (i) of 

Proposition 3, the channel efficiency suffers from a increasing number of retailers. Figure 1 shows how the 

channel efficiency changes with the retailer’s number. In particular, if k=1, 5.00   and 11  , the 

channel efficiency is below 60% when there are more than 7 retailers in the distribution channel. 

Insight 3. With multiple symmetric retailers in the distribution channel, the channel efficiency increases 

with the local advertising effectiveness and/or the manufacturer’s relative channel power, however, it 
deteriorates quickly as the number of retailer scales up. 

4. Optimal participation strategies with asymmetric retailers 

According to Berger (1972), co-op advertising ventures in practice are frequently specified on a 50-50 

basis, with each participant paying half of the expenses. Nagler (2006) conducted a large-scale study of 

2,286 brands in the US, finding 61.5% of the retailers enjoy a participation rate of 50% from the 

manufacturers. Does it make sense for different retailers to enjoy a uniform level of participation rate (for 

instance, 50%)? Intuitively, if the manufacturer’s uniform participation rate is derived from a sense of 

fairness rather than systematic profit maximization, it can be inefficient. One important reason can be the 

retailer’s free-riding. It is commonly believed that a well-designed channel contract should prevent 

horizontal free-riding among retailers (Lal, 1990).  

In this section, we consider co-op advertising with multiple asymmetric retailers. We will examine 

how different parameters affect the manufacturer’s co-op advertising decisions, and will quantify the 

efficiency losses due to retailers’ free-riding under the manufacturer’s uniform participation strategy. 

Without loss of generality, let n=2.  

4.1. The retailer’s free-riding under the manufacturer’s uniform participation strategy 

Consider M, the Stackelberg game leader, offers a uniform co-op advertising participation rates to R1 
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and R2 ( ttt  21 ). Then channel members’ profits are: 

0

2

1

2

1

002100 )(),,,( aatakabtaaa
i

i

i

ii 







 



 ,              (20) 

11011101 )1()(),,( atakabtaa   ,                     (21) 

22022202 )1()();,( atakabtaa   .                    (22) 

The game sequence is the same as in Section 3. Without loss of generality, we assume 
21    all 

through this paper. Before moving on, let’s define 
2211:  R
, where )( 2

2

21

2

1

2  bbb iii  . 

By definition, 
i , i=1, 2, and R  have the following properties: 

Lemma 2.  

(i) ]1 ,0[i , i=1, 2, 121  . 

(ii) 
i  increases in bi and decreases in bj, ij  , i=1, 2. When 21 / bb , we get 11  , 

and 
1 R
; Conversely, when 0/ 21 bb , we get 01  , and 

2 R
.  

According to Lemma 2, R  is a convex combination of 1  and 2 , weighted by 
1  and 2 , 

so 21   R . We call R  the retailer’s average profit margin. 

Proposition 4. On condition that R
2
1

0  , the unique sub-game perfect equilibrium solution for the 

Stackelberg game will be given by 

2

0

2

210 )(
4

1
ˆ bba D  ,                               (23) 

2

2

0

22

1

2

1
1

)2(

16

1
ˆ

R

RD kb
a



 
 ,                          (24) 

2

2

0

22

2

2

2
2

)2(

16

1
ˆ

R

RD kb
a



 
 .                           (25) 

The manufacturer’s optimal participation rate will be 

R

RDt









0

0

2

2
ˆ .                                 (26) 

Hereafter in this paper, we will use the upper-cap “ ” to notify all the equilibrium solutions and the 

associated items with M’s uniform participation strategy. 

With Proposition 4 we are ready to observe the retailer’s free-riding when M uses a uniform 

participation rate 
Dt̂  with differentiated retailers. According to Equation (26), M’s optimal participation 

rate increases in 0  and decreases in R . Let’s consider the extreme case when R1’s market size b1 is 

larger than R2’s market size b2 by far, i.e., 21 / bb . By property (ii) of Lemma 2, we have 11  , 

and consequently R  goes down to 1 , then M’s optimal participation rate will be raised up to 

)2/()2( 1010   , as if R1 is the only downstream reseller. For this situation, we say that R2 gets a 

free-ride, because R2 enjoys the same high level of participation rate as R1. Extreme situations like 

21 / bb  are unusual in real scenarios, but situations with 21 bb   can be reasonably expected 
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given 21   ‡
; So long as 21 bb  , one can use similar argument to show that the retailer with smaller 

market size gets the free-ride.  

Insight 4. With multiple asymmetric retailers, the manufacturer’s uniform participation strategy results in 

the retailer’s free-riding. The manufacturer’s optimal uniform participation rate tends to be in favor of 
retailers with larger market sizes; therefore, retailers with smaller market sizes (usually accompanied by 

higher profit margins) get the free-ride. 

4.2. The manufacturer’s retailer-specific participation strategy 

Because of the retailers’ free-riding, the manufacturer’s uniform participation strategy can be 

inefficient. In order to quantify the inefficiencies and disclose the fact that M’s uniform participation 

strategy indeed imposes inappropriate incentives in co-op advertising, we introduce the manufacturer’s 

retailer-specific participation strategy. Under the retailer-specific participation strategy, M is allowed to use 

differentiated participation rates towards different retailers. Denote M’s participation rate with Ri by ti, i=1, 

2. Then channel members profit functions are 

0

2

1

2

1

00212100 )(),,,,( aatakabttaaa
i

ii

i

ii 







 



 ,            (27) 

1110111101 )1()(),,( atakabtaa   ,                   (28) 

2220222202 )1()(),,( atakabtaa   .                  (29) 

The game sequence is the same as been specified in the uniform participation case. 

Proposition 5. If i
2
1

0  , i=1, 2, then under the manufacturer’s retailer-specific participation strategy, 

channel members’ equilibrium advertising levels are 

2

0

2

210 )(
4

1~ bba D  ,                               (30) 

2

10

22

11 )2(
16

1~   kba D ,                            (31) 

2

20

22

22 )2(
16

1~   kba D .                            (32) 

The manufacturer’s optimal participation rates are 

10

10
1

2

2~








Dt ,                                 (33) 

20

20
2

2

2~








Dt .                                 (34) 

Proof of Proposition 5 is almost the same as Proposition 4. So we omit it here to save space. Hereafter 

in this paper, we use the tilde “~” to represent equilibrium solutions and the associated items for cases with 

M’s retailer-specific participation strategy.  

                                                        
‡ Marketing practices suggest that a retailer who possesses a giant market size usually sets its unit margins 

being comparatively low, for example, the Wal-Mart, being famous for its Everyday Low Prices, operates 

with a low gross margin of no more than 4% over decades. A range of studies has found that prices at 

Wal-Mart are anywhere from 8 to 39 percent less than its major competitors, and that even a very small 

increase in its costs, without a corresponding increase in revenues, would wipe out all Wal-Mart’s profits 

entirely (Furman, 2005). In contrast, a retailer with limited market size would often times impose a high 

unit margin. This is well explained by the old marketing discipline: low profits go along with good sales. 
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Making comparisons between Equations (33)-(34) and (26), and also by Lemma 2, we know that 
DDD ttt 12

~ˆ~
 . This observation can be intuitively explained as 

Insight 5. In contrast with the optimal retailer-specific participation strategy, M’s optimal participation 

rate under the uniform participating strategy imposes inappropriate incentives to the retailers: It is 
insufficient with the retailer of larger market sizes (i.e., R1 in our model), and is excessive with the retailer 

of smaller market sizes (i.e., R2 in our model). 

Regarding how to make a difference between asymmetric retailers, Equations (33)-(34) suggest that 

M’s optimal participation rate towards the retailer with smaller market sizes should be less than that with 

larger sizes. The following proposition, along with Figure 2, quantitatively compares M’s uniform 

participation strategy with M’s retailer-specific participation strategy. Results of Proposition 6 are natural 

consequences of Proposition 4 and 5, so we omit the proof to save space.  

Proposition 6.  

(i) If 12
1

0   , then M’s optimal policy is to take no participations in the retailers’ local 

advertising, either under the uniform participation strategy or under the retailer-specific 

participation strategy (i.e. 0
~ˆ~
21  DDD ttt ). 

(ii) If R
2
1

012
1  , then M will participate into R1’s local advertising with rate 

)2()2(
~

10101  Dt  and participate into R2’s local advertising with rate 

0
~

2 Dt  under the retailer-specific participation strategy; But will take no participations 

with either retailers under the uniform participation strategy (i.e. 0ˆ Dt ). 

(iii) If 22
1

02
1  R , then M will participate into R1’s local advertising with rate 

)2()2(
~

10101  Dt  and participate into R2’s with rate 0
~

2 Dt  under the 

retailer-specific participation strategy; And will participation into both retailers’ local 

advertising with rate )2()2(ˆ
00 RR

Dt    under the uniform participation 

strategy. 

(iv) If 022
1   , then M will participate into R1’s local advertising with rate 

)2()2(
~

10101  Dt  and participate into R2’s local advertising with rate 

)2()2(
~

20202  Dt  under the retailer-specific participation strategy; And will 

participations into both retailers’ local advertising with rate 

)2()2(ˆ
00 RR

Dt    under the uniform participation strategy. 

4.3. System efficiency estimations 

For all cases discussed above, we can measure the channel efficiencies by comparing the optimal 

channel profit under a specific game setting against the optimal profit of the centralized channel. We use 

two measurements: One is the absolute measure, denoted by 0 , which describes the distance of the 

equilibrium channel profit under decentralized solution and the optimal total channel profit under 

centralized solution. For example, when M is allowed to use the retailer-specific participation rates, we 

define 
D

S

C

S 
~

:
~
 ; when M is confined to the uniform participation strategy, 

D

S

C

S  ˆ:̂ ; The 

other is the relative measure, denoted by ]1 ,0[ , which is the ratio of the equilibrium channel profit 

under decentralized solution over the optimal total channel profit under centralized solution (  has been 

introduced in Section 3.2). For example, when M is allowed to use the retailer-specific participation rates, 

we define 
C

S

D

S  /
~

:~ ; when M is confined to the uniform participation strategy, 
C

S

D

S  /ˆ:̂ . By 

definition, the absolute measure and the relative measure are consistent; a lower (higher) value of   ( ) 
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indicates a higher level of system efficiency.  

We list all equilibrium solutions in Table 1 for a reference, where the total channel profit under with 

centralized solution is 
2

2

1

02

2

1

2

0

22 )(
4

1
)(

4

1








 

 i

i

i

ii

C

S bbk  . The 2 rows at the bottom gives the 

efficiency estimation by both absolute measure and relative measure. We first focus on the absolute 

measure. Compare ̂  with 
~

, we quantify the efficiency losses due to M’s uniform participation 

strategy by 
~ˆ  D

S

D

S
ˆ~

)()( 2

2

2

2

2

1

2

1

2

21

22

2

2

104
1 bbkbb   , which is greater than zero as 

long as 21   . The intuitions here are quite clear: 1) M’s uniform participation strategy incurs 

efficiency losses as long as the retailers’ gross margins do not coincide; 2) The system’s inefficiency gets 

worse when the distance of 1  and 2  enlarges. Since the uniform participation strategy can be taken 

as a special case of the retailer-specific participation strategy with 21 tt  , so formally, we may consider 

the item 0
~ˆ   as the added value to the system by switching to the retailer-specific participation 

strategy.  

We then focus on the relative measures for channel efficiencies. We do not fully display   in its 

original form, instead we estimate its upper bound and lower bound (Detailed derivations in the appendix). 

All bound estimations are conducted with 0k , 0
2
1

0  i  and 0ib , i=1, 2. The lower bounds 

(upper bounds) are corresponding to the worst (best) situation of the channel efficiencies. For example, the 

lower bound 5/9 of ~  suggests that, when the retailer-specific participation strategy is adopted, the 

distribution channel is, theoretically speaking, at risk of attaining a low efficiency of mere 55.6%. For 

another example, the lower bound 0 of ̂  suggests that the uniform participation strategy can be 

extremely inefficient if 01   and  kb 021 2 . The explanation is quite straight 

forward. When the above conditions are met, it is reasonable to postulate that: 1) R1’s gross margin is 

smaller than R2 by far, and 2) R1’s market size is larger than R2 by far. According to property (ii) of 

Lemma 2, M’s uniform participation rate 
Dt̂  tends to be one, which will give R2 a big free-ride, because 

M’s participation rate with R2 would have been zero under M’s retailer-specific participation strategy. It is, 

indeed, the negative impact of R2’s free-riding that drives the system’s efficiency to zero.  

5. Concluding remarks 

This study is strongly motivated by the scarcity of the modeling works which explicitly consider 

co-op advertising in a multiple-retailer’s environment. So in this paper, as our main contribution, a game 

theoretical model with multiple retailers is developed to explore the impacts of the retailer’s multiplicity on 

channel members’ optimal decisions and on the total channel efficiency. We examine and quantify the 

impacts in two different aspects. It is observed that: 1) With multiple symmetric retailers, when the number 

of retailers scales up, the manufacturer’s national advertising investment contributes increasingly to add to 

channel members’ profits, but the total channel efficiency goes down quickly and converges to a certain 

value; 2) With multiple asymmetric retailers (differentiated by gross margins and market sizes), the 

manufacturer’s uniform participation strategy can be inefficient due to the retailer’s free-riding. We show 

that the manufacturer’s optimal decision under the uniform participation constraint tends to impose 

inappropriate incentives to retailers, and then discuss how the detrimental impacts of this distortion can be 

mitigated and corrected by adopting the retailer-specific participation strategy. For both the symmetric and 

asymmetric-retailer cases, we solve the games all in closed form and explicitly estimate efficiency bounds.  

For future researches, we would first like to extend the current study to consider retailers’ 

advertising/pricing competitions. Another interesting attempt would be to design some mechanism to 

coordinate the distribution channel. Finally, all models proposed in this paper are deterministic in nature. It 

would also be interesting to investigate how uncertainties and dynamics could change the conclusions of 

this paper. 
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Figures and Tables 

Figure 1. Scaling effect on the system’s efficiency with multiple symmetric retailers when parameters 

are specified as 5.00  , 11  , and k=1 

 
 

 

 
Figure 2. Comparison of M’s optimal participation rates with R1 and R2 under both the uniform and 

retailer-specific participation strategies 

 
 
 

 

Table 1. Channel performance and system efficiency estimation with two asymmetric retailers 
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Appendix 

Proof of Proposition 1. The first order condition 0),( 0  aaS  is equivalent to  

01)(
2

1
2

1

0101

0




 
anb

a

S                           (A1) 

01)(
2

1
2

1

101 


 

i

i

S akb
a

 , i=1, 2, …, n.                (A2) 

Solving the above two Equations, we obtain (7)-(8) as the unique centralized solution.  

Proof of Lemma 1. Given M’s decision of a0 and t1, the n retailers will move simultaneously to choose 

their local advertising levels that optimize their individual profits 
i , i=1, 2, …, n. According to Equation 

(11), 
i  is independent with aj, ij  , so 

2

1

22

1

2

14
1* )1/( tkbai    which maximizes 

i  should be the 

dominant strategy for Ri. 
*

ia  is also unique because 
i  is strictly concave with ai, so we obtain the 

unique Nash equilibrium as shown by Equation (12). 

Proof of Proposition 2. According to Lemma 1, the retailers’ Nash equilibrium is given by 
2

1

22

1

2

14
1

1

**

1

*

1

*

1

* )1/()|...,,,...( tkbtaaaaa niii   , i=1, 2, …, n. Substitute 
*

ia , i=1, 2, …, n, into M’s 

profit function, we get 

02

1

1

22

1

2

1

2

1

2

11
010100

)1(4)1(2
),( a

t

tkb
n

t

kb
abnta 


















 ,               (A3) 

The first order conditions of ),( 100 ta  in (A3) on a0 and t1 are, respectively, 

              01
2

1
2

1

010

0

0 


 
anb

a
 ,                            (A4) 

              0
)1(

)22(

4

1
3

1

0111011

22

1

1

0 









t

ttknb

t


,                  (A5) 

Solving (A4)-(A5), we get (13) and (15). Obviously, 0  in Equation (A3) is strictly concave with a0 for 

any given t1, so Da0
 in (13) is the unique optimal national advertising level that maximizes M’s profit. 

According Equation (A5), if 02 10   , then 0  will increase with t1 when 
10

10

2

2

10 






 t  and 

decreases with t1 when 112

2

10

10 



t


; However, if 02 10   , then 0  will decrease with all 

10 1  t . So M’s optimal participation rate will be 
10

10

2

2

1 






Dt  if 02 10    and 01 Dt  if 

02 10   . Here we are only interested in the former case where M’s optimal participation rate takes 

positive values. When 12
1

0   , by substituting (15) into (12) we get Equation (14).  

Proof of Proposition 3. 

(i) Take the first order and second order derivatives of   with respect to n, we have 

              0
)()(4

3
222

01

2

1

2









nk

k

n 


,                        (A6) 

              0
)()(2

3
322

01

2

1

2

2

2









nk

k

n 


.                        (A7) 
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So, for any given 10  ,   and k,   is a convex decreasing function of n. Let n goes to infinity, we have 

2

10100 )/()2(lim  
n

. 

(ii) For any given n, 0  and 1 , we have 

              0
)()(2

3
222

01

2

1 







nk

nk

k 


.                       (A8) 

Let 
10 / r , then for any given n and k, we also have 

              0
)()1(

4

2

1
23

0

2











nk

nk

r 


.                          (A9) 

Since   increases with k for all n, 0  and 1 , so   attains its lower bound when k reaches down to 

0, that is 
2

101000
)/()2(  

k
, which has a minimum value of 5/9 when 12

1
0   . On 

the other hand,   increases with r for all n and k, so when 0 ,   touches its upper bound 1.  

Proof of Proposition 4. We use backward-induction. At the second stage of the game, for any given a0 and 

t1, Ri’s profit function is strictly concave with ai, so Ri’s optimal response ),( 10

* taai  is uniquely obtained 

as: 

              
2

1

222

10

*

)1(4

1
),(

t

kb
taa ii

i





, i=1, 2.                        (A10) 

Substituting ),( 10

* taai , i=1, 2, into Equation (20), we get M’s profit function as 

)),,( ),,( ,( 10
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Take first order conditions of (A11) on a0 and t1, respectively, we have 
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Solving (A12)-(A13), we get (23) and (26). Next, we will confirm that (23) and (26) gives the unique 

solution that maximizes M’s profit. 0  in Equation (A11) is additive separable with respect to a0 and t1, 

so we may deal with the two variables separately. Obviously, 0  in Equation (A11) is strictly concave 

with a0 for any given t1, so Da0
 in Equation (23) is the unique optimal national advertising level. Then we 

check how 0  changes with t1. According Equation (A13), if 02 0  R , then 0  will increase 

with t1 when 
R

Rt 








0

0

2

2

10  and decreases with t1 when 112

2

0

0 



t

R

R




; However, if 02 0  R , then 

0  will decrease with all 10 1  t . So M’s unique optimal participation rate will be 
R

RDt 








0

0

2

2

1̂
 if 

R
2
1

0   and 01̂ Dt  if 
R

2
1

0  . Here we are only interested in the former case where M’s optimal 

participation rate takes positive values. When R
2
1

0  , by substituting (26) into (A10) we obtain 

(24)-(25).  

Bound estimation for channel efficiencies by relative measure in Table 1 

Without loss of generality, we assume 21   . Then the condition i
2
1

0  , i=1, 2 is equivalent to 
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22
1

0   , and the parameter ranges will be 0k , 012
1

22
1

0   , and 0ib , i=1, 2. First of 

all, we consider the case when M adopts the retailer-specific participation strategy. The channel efficiency 

by relative measure is 
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so ~  increases in 0  for all 012   , 0, 21 bb  and 0k . Then the upper bound of ~  must 

be 1, because 1~
0




 . On the other hand, the lower bound of ~  must be attained at 22
1

0   , 

where Equation (A14) will be reduced to  
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Take the first order derivative of (A16) with k, we find that it will be increasing with k for all 

012    and 0, 21 bb , then we know that the lower bound of ~  must be attained at 22
1

0    

and k = 0, where Equation (A16) will be further reduced to  
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Again, Equation (A17) is increasing in 1b  for all 01   and 02 b , so we can simply take 1b  down 

to zero to obtain the lower bound of (A17) being 5/9, which should be minimal possible value of ~  with 

0k , 012
1

22
1

0    and 0, 21 bb . So the efficiency bounds are estimated as ]1,[~
9
5 .  

Then we consider the case when M adopts the uniform participation strategy. The channel efficiency 

by relative measure is presented as 
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One can check that when 01   and  012 2 bk , ̂  can reach down to 0; When 

21    and 0 , ̂  can rise up to 1. So the efficiency bound is estimated by ]1,0[ˆ .  
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