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Abstract In Nash bargaining problem, due to fairness concern of players,
instead of maximizing the sum of utilities of all players, an implementable
solution should satisfy some axioms or characterizations. Such a solution can
result in the so-called price of fairness, because of the reduction in the sum of
utilities of all players. An important issue is to quantify the system efficiency
loss under axiomatic solutions through the price of fairness. Based on Perles-
Maschler solution of two-player Nash bargaining problem, this paper deals
with the extended Perles-Maschler solution of multi-player Nash bargaining
problem. We give lower bounds of three measures of the system efficiency for
this solution, and show that the lower bounds are asymptotically tight.

Keywords Bargaining problem · Perles-Maschler solution · Price of fairness ·
Convexity · Matrices

1 Introduction

In general, Nash bargaining problem involves a group of players who have the
opportunity to collaborate for mutual benefit (Nash 1950 and Roth 1979). One
of common objectives is to maximize the sum of utilities of all players. How-
ever, the corresponding system optimal solution may not be implementable
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due to possible “unfair” to some of players for the expense to achieve such
a solution (Bertsimas et al. 2011). Consequently, it is important to have a
solution being implementable based on particular characterizations which are
acceptable by all players. These characterizations lead to several axioms, some
of which are directly or indirectly relevant to “fairness” concern. Usually, an
axiomatic solution deviates from the system optimal solution. The resultant
relative system efficiency loss (i.e., relative difference of the sum of utilities of
all players to the maximum system utility) due to the solution deviation is
called price of fairness (POF) (Bertsimas et al. 2011).

To the best of our knowledge, the first axiomatic solution of Nash bar-
gaining problem is the Nash solution (see Nash 1950), which satisfies four
axioms. Later, Kalai and Smorodinsky (1975) propose a different axiomatic
solution (with four axioms), with three axioms being the same as the Nash
solution. (We call it KS solution.) Furthermore, Perles and Maschler (1981)
propose a new axiomatic solution (with five axioms), with three axioms being
the same as the Nash solution. (We hereafter call it PM solution.) The key
different point between the PM solution and others is that the PM solution sat-
isfies an important axiom of superadditivity: aggregating two Nash bargaining
problems into one can benefit both players. Salonen (1985) proposes another
solution (with four axioms) which is monotonic with respect to coin tossing
method. It is noted that the above four solutions are solutions of two-player
Nash bargaining problem.

It is shown that the Nash solution and the KS solution can be general-
ized to multi-player Nash bargaining problem without changing their axioms
(Roth 1979 and Imai 1983). And another characterization of the KS solution
is given by Chang and Hwang (1999). Later, Hinojosa et al. (2005) generalize
the KS solution to the case when each player has multiple criteria to value
his outcome. However, the extension of the PM solution without changing the
axioms is proved to be impossible (Perles 1982). Nevertheless, with an geo-
metric procedure described by Perles and Maschler (1981), instead of axioms,
Calvo and Gutierrez (1994) extend the PM solution to multi-player bargaining
problem and prove that this geometric procedure is equivalent to the axioms
in the PM solution of two-player Nash bargaining problem. (We denote this
solution by extended PM solution, or EPM solution for short.)

For multi-player Nash bargaining problem, the paper of Bertsimas et al.
(2011) is the first one to analyze the POFs of the Nash solution and the
KS solution. The authors present tight lower bounds of the POF for both
solutions which depend on a single parameter-the number of players. Recently,
Bertsimas et al. (2012) extend the results to a family of solutions parameterized
by a single parameter that measures the aversion to inequality. In particular,
they provide near-tight upper bounds on the relative efficiency loss compared
to the system optimal solution, as well as tight upper bounds on the relative
fairness loss where fairness is measured by the minimum utility of players.

On the other hand, the PM solution of two-player Nash bargaining prob-
lem is also well accepted and widely studied (see, e.g., Thomson 1994 and
Pallaschke and Rosenmuller 2007). Although the EPM solution is not charac-
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terized by axioms, the geometric procedure proposed by Calvo and Gutierrez
(1994) characterizes the bargaining process of all players. That is, each player
initially demands his highest possible payoff, if this outcome is achievable, the
bargaining ends with this outcome. Otherwise, each player decreases his initial
payoff continuously until they reach an agreement (i.e. an achievable outcome).
This characterization does not only gives a result of the bargaining problem
but also provides a reasonable bargaining process. Hence in this paper, we aim
to characterize the POFs of three relevant measures of the EPM solution (for
multi-player Nash bargaining problem).

The structure of this paper is organized as follows. In Section 2, we intro-
duce the notation of Nash bargaining problem and the geometric procedure
of the EPM solution. More detailed characterizations of the EPM solution
are introduced in Section 3. The main result of this paper is presented in
Section 4. In Section 5, examples are given to demonstrate our bounds being
asymptotically tight. The paper is concluded in Section 6.

2 Nash Bargaining Problem and Geometric Procedure of the EPM
Solution

In this section, we briefly introduce Nash bargaining problem and alternative
characterizations of the EPM solution proposed by Calvo and Gutierrez (1994).
To begin with, we define the following notation.

0n = (0, . . . , 0)T ∈ Rn;
e = (1, . . . , 1)T ∈ Rn;
ei = (0, . . . , 0, 1, 0 . . . , 0)T ∈ Rn — the ith coordinate is 1, for i = 1, 2, . . . , n.
For x = (x1, . . . , xn)

T ∈ Rn, y = (y1, . . . , yn)
T ∈ Rn, u ∈ R and A ⊂ Rn,

we define the following items:
1) an order is defined as: x ≥ (>)y ⇐⇒ xi ≥ (>)yi for i = 1, 2, . . . , n;
2) the following vectors are defined: x−i = (x1, . . . , xi−1, xi+1, . . . , xn)

T , i =
1, 2, . . . , n;

(x−i : u) = (x1, . . . , xi−1, u, xi+1, . . . , xn)
T , i = 1, 2, . . . , n;

3) the following sets are defined: OP (A) = {z ∈ A| if w ≥ z and w ∈
A,then w = z};

Ai = {z−i|z ∈ A};
4) the following functions are defined: gi(x−i|A) = sup{u ∈ R|(x−i :

u) ∈ A},∀x ∈ A, i = 1, 2, . . . , n. Then ∀x ∈ A, we have gi(x−i|A) ≥ xi, i =
1, 2, . . . , n. Furthermore, define g(x|A) = (g1(x−1|A), . . . , gn(x−n|A))T ,∀x ∈
A.

In the following, we formulate Nash bargaining problem.

Definition 1. A pair (a, A) is a bargaining problem if A is a compact and
convex subset of Rn, and a ∈ Rn. Let U be the collection of all these pairs.
(A is called a bargaining set, and a is called the disagreement point.)
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Definition 2. A bargaining solution is a function f defined on U such that
f satisfies a ≤ f(a, A) ∈ A.

Since the EPM solution fPM has the property fPM(a, A) = fPM(0n, A −
a) + a, without loss of generality we assume the disagreement point a to be
the origin, i.e., a = 0n, and also we assume A ⊂ Rn

+. Thus, we can write A
instead of (0n, A) for short, i.e., a bargaining set A characterizes a Nash bar-
gaining problem. According to Calvo and Gutierrez (1994), the EPM solution
is originally defined on a subset of U , which consists of the bargaining sets
satisfying the following three assumptions:

Assumption 1. A ⊂ Rn
+ is convex, compact, comprehensive and ∃a ∈ A

such that a > 0n, where comprehensive means if u ∈ A and 0n ≤ v ≤ u, then
v ∈ A.

Assumption 2. For each i = 1, 2, . . . , n, gi(·|A) is continuous and strictly
decreasing, and ∀i = 1, 2, . . . , n, x ∈ OP (A) ⇐⇒ xi = gi(x−i|A).

Assumption 3. ∀i = 1, 2, . . . , n, gi(·|A) ∈ C2(Ai).

Let Bn
+ be the collection of all sets satisfying Assumptions 1, 2 and 3. Then,

Bn
+ is the subset of U . In analysis hereafter, we are interested in Bn

+ instead
of U . Nevertheless, it is known from Calvo and Gutierrez (1994) that there
exists a unique EPM solution defined on Bn

+ .

Given A ∈ Bn
+, Calvo and Gutierrez (1994) define a so-called PM path

C(A) as follows.

Definition 3. Given A ∈ Bn
+, the parametric equation of the PM path

C(A) is η(x1;A) = (x1, η2(x1|A), . . . , ηn(x1|A))T ,x1 ∈ [0, g1(0n−1|A)] if, ∀i =
2, . . . , n, ηi(·|A) is a continuous, strictly increasing and differentiable function
satisfying,

i) ηi(0|A) = 0,∀i = 2, . . . , n.

ii) ∀x ∈ C(A) ∩A,

ii.1) g(x|A) = (g1(x−i|A), . . . , gn(x−n|A))T ∈ C(A).

ii.2) η′i(x1|A) = η′i(g
1(x−i|A)|A),∀i = 2, . . . , n.

Then, the EPM solution fPM(A) given by Calvo and Gutierrez (1994) is
the intersection of the C(A) and OP (A), i.e., fPM(A) ∈ C(A) ∩OP (A).

3 The EPM Solution

In this section, we briefly introduce the characterization of the EPM solution
proposed by Calvo and Gutierrez (1994). They have proved that the tangent
vector of C(A) must satisfy an eigenvalue and eigenvector equation. Addition-
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ally, they have proved that the curve C(A) is determined uniquely by some
ordinary differential equations.

3.1 The eigenvalue and eigenvector equation

For ∀A ∈ Bn
+ and x ∈ A, define a matrix G(x|A) = ∂g(x|A)/∂x, i.e.,

G(x|A) =


0 g12(x−1|A) · · · g1n−1(x−1|A) g1n(x−1|A)

g21(x−2|A) 0 · · · g2n−1(x−2|A) g2n(x−2|A)
...

...
. . .

...
...

gn−1
1 (x−n+1|A) gn−1

2 (x−n+1|A) · · · 0 gn−1
n (x−n+1|A)

gn1 (x−n|A) gn2 (x−n|A) · · · gnn−1(x−n|A) 0

 .

Here gji (x−j |A) = ∂gj(x−j |A)/∂xi for i ̸= j. Then, ∀x ∈ A, consider the
following eigenvalue and eigenvector equation,

λ(x|A) · h(x|A) = G(x|A) · h(x|A) s.t h(x|A) ≥ 0 , λ(x|A) ≤ 0. (1)

Calvo and Gutierrez (1994) show that, ∀x ∈ A, equation (1) has a unique
solution of the eigenvalue λ(x|A) and a unique associated eigenvector h(x|A)
satisfying λ(x|A) < 0 and h(x|A) = (1, h2(x|A), . . . , hn(x|A)) > 0.

3.2 The ordinary differential equations

The ordinary differential equations that uniquely determine the parametric
equation of the PM path C(A) are,{

η′(x1|A) = h(η(x1|A)|A),
η(0|A) = 0n.

(2)

The curve C(A) is formed in the following manner. It consists of two parts:
a curve C1(A) in A and a curve C2(A) outside A. The curve C1(A) = C(A)∩A
starts from 0n and moves along the direction h(x|A) until reaching the bound
of A, i.e., reaching the point fPM(A). The rest part C2(A) is determined by
C2(A) = g(C1(A)|A). Then, C(A) = C1(A)

∪
C2(A).

4 The Efficiency of the EPM solution

In this section, we analyze the system efficiency loss of the EPM solution.
For expositional convenience, throughout the paper we denote fPM(A) =
(f1(A), . . . , fn(A)). Three measures that characterize the system efficiency
are considered. The first one is defined in Bertsimas et al. (2011), which is not
scale invariant:

Ee
A =

eT · fPM(A)

maxx∈A eT · x
=

∑n
i=1 f

i(A)

maxx∈A

∑n
i=1 xi

. (3)
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Other two measures are both scale invariant:

Eg
A =

∑n
i=1[g

i(0n−1|A)]−1 · f i(A)

maxx∈A

∑n
i=1[g

i(0n−1|A)]−1 · xi
(4)

and
Ef

A =
n

maxx∈A

∑n
i=1[f

i(A)]−1 · xi
. (5)

Similarly to Bertsimas et al. (2011), we define the POFs of the EPM solu-

tion to be 1− Ee
A, 1− Eg

A and 1− Ef
A respectively.

Our goal is to give lower bounds of the ratios Ee
A, E

g
A and Ef

A, which are
proved to be asymptotically tight in Section 5. To do this, we divide the proof
into three steps: in the first step, we show that the absolute value of λ(x|A)
has a upper bound (i.e., Theorem 1); in the second step, we see that in the
EPM solution, the utility of each player has a lower bound (i.e., Theorem 2);
and in the third step, we use the lower bound in the second step to estimate
Ee

A, E
g
A and Ef

A. (i.e., Theorem 3).

Theorem 1 ∀A ∈ Bn
+,x = (x1, . . . , xn)

T ∈ A and x /∈ OP (A), the eigenvalue
λ(x|A) of the matrix G(x|A) satisfies |λ(x|A)| ≤ n− 1.

Proof : To prove this theorem, we consider another matrix V which has the
same eigenvalues as G(x|A), and then prove that the elements of V are in the
interval [−1, 0].

Since x ∈ A and x /∈ OP (A), we have gi(x−i|A) > xi for i = 1, . . . , n.
Define the following matrix

J = diag{g1(x−1|A)− x1, . . . , g
n(x−n|A)− xn}. (6)

Let V = {vij}ni,j=1 = J−1G(x|A)J. Then, V has the same eigenvalues as
G(x|A).

Since V = J−1G(x|A)J, we have,

vii =
gi(x−i|A)− xi

gi(x−i|A)− xi
· 0 = 0. (7)

This implies that the diagonal elements of V are all zeros.
∀α, β ∈ Ak and u ∈ [0, 1], define α+k = (α1, . . . αk−1, g

k(α|A), αk, . . . , αn−1),
β+k = (β1, . . . βk−1, g

k(β|A), βk, . . . , βn−1) and γ = uα+k + (1 − u)β+k. Ac-
cording to the definition of gk(·|A), together with A being compact, we have
α+k ∈ A and β+k ∈ A. Since A is convex, we have γ = uα+k+(1−u)β+k ∈ A.
From the definition of gk(·|A), it holds that

gk(uα+ (1− u)β|A) = gk((uα+k + (1− u)β+k)−k|A) = gk(γ−k|A)
≥ γk = ugk(α|A) + (1− u)gk(β|A).

(8)

Hence, ∀1 ≤ k ≤ n, gk(·|A) is concave in Ak.
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For i ̸= j,

vij =
gj(x−j |A)− xj

gi(x−i|A)− xi
gij(x−i). (9)

Since J · ej + x = (x−j : gj(x−j |A)) ∈ OP (A) ⊆ A (see the definition of
gi(·|A)), we have (J · ej + x)−i ∈ Ai. Because gi(·|A) is concave in Ai and
x−i ∈ Ai, we have,

gij(x−i|A) ≥
gi(x−i|A)− gi((J · ej + x)−i|A)

xj − (J · ej + x)j

=
gi(x−i|A)− gi((J · ej + x)−i|A)

xj − gj(x−j |A)
.

(10)

Therefore, by (9),

vij ≥ −gi(x−i|A)− gi((J · ej + x)−i|A)
gi(x−i|A)− xi

. (11)

Since J · ej + x = (x−j : gj(x−j |A)) ∈ OP (A), we have from Assumption 2
that gi((J · ej + x)−i|A) = (J · ej + x)i = xi. Hence,

vij ≥ −1. (12)

Also according to Assumption 2, gi(·|A) is decreasing, thus (9) leads to

vij ≤ 0. (13)

From (12) and (13), it is known that the elements of V are in the interval
[−1, 0].

Now we have proved that the elements of V are in the interval [−1, 0] and
the diagonal elements ofV are all zero. According to Gershgorin circle theorem
(see Varga (2009) ), the norms of all the eigenvalues of V are no greater than
n− 1. Since λ(x|A) is an eigenvalue of G(x|A), and G(x|A) and V have the
same eigenvalues, we have |λ(x|A)| ≤ n− 1.�

The next theorem is a generalization of a result in Salonen (1985).

Theorem 2 ∀A ∈ Bn
+, fPM(A) ≥ g(0n|A)/n.

Proof : To prove the inequality, here we construct a function W(u) : R 7−→ Rn

in that ∃u0 ≥ 0 it follows W(u0) ≥ 0n ⇐⇒ fPM(A) ≥ g(0n|A)/n. Therefore,
proving W(0) = 0n and W′(u) ≥ 0n for 0 ≤ u < u0 is sufficient.

Consider a function

W(u|A) = (n− 1)η(u|A) + g(η(u|A)|A)− g(0n|A). (14)

Taking the derivative of W(u|A) with respect to u and applying (1) and
(2), we have

W′(u|A) =(n− 1)η′(u|A) + ∂g

∂x
(η(u|A)|A) · η′(u|A)

=(n− 1 + λ(η(u|A)|A)) · h(η(u|A)|A).
(15)
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Assume fPM(A) = η(uPM |A) ∈ OP (A). Now we consider 0 ≤ u < uPM .
Since η is strictly increasing by Definition 3, we have η(u|A) ∈ A/OP (A).
According to Theorem 1 we know that |λ(η(u|A)|A)| ≤ n − 1. According
to (1), we also know that h(η(u|A)|A) ≥ 0n. Therefore, by (15), we have
W′(u|A) ≥ fPM(A), which implies W (uPM |A) ≥ W (0|A) = 0n, i.e.,

W(uPM |A) = (n− 1)η(uPM |A) + g(η(uPM |A)|A)− g(0n|A) ≥ 0n. (16)

Since η(uPM |A) = fPM(A) ∈ OP (A), according to Assumption 2, we have
η(uPM |A) = g(η(uPM |A)|A). Thus,W(uPM |A) ≥ 0n ⇐⇒ fPM(A) ≥ g(0n|A)/n,
where uPM can be regarded as u0. By (16), we have fPM(A) = η(uPM |A) ≥
g(0n|A)/n, which completes the proof.�

With the help of the above two theorems, we now estimate Ee
A, E

g
A and

Ef
A.

Theorem 3 ∀A ∈ Bn
+,

Ee
A ≥ 1

n
+

n− 1

n
· min1≤i≤n g

i(0n−1|A)
Σn

i=1g
i(0n−1|A)

, (17)

Eg
A ≥ 2n− 1

n2
(18)

and
Ef

A ≥ n

n2 − n+ 1
. (19)

Before providing the proof of the theorem, we give the following sketch
idea of the procedure to estimate Ee

A. (E
g
A can be easily estimated by using

the estimation of Ee
A, and Ef

A can be easily estimated directly.)
Since A is compact, there exists z = (z1, . . . , zn)

T ∈ A such that eT · z =
maxx∈A eT · x. It is clear that z ∈ OP (A). We define the following linear
function:

L(x) =
∑n

i=1(xi/g
i(0n−1|A));

and further define the following sets:
S = {x|x ≥ 0n, L(x) ≤ 1};
S̃ = {x|x ≥ 0n, L(x) = 1,∃j, xj = 0};
D = {bz+ (1− b)x|b ∈ [0, 1],x ∈ S̃};
D̃ = {x ∈ D|x ≥ g(0n|A)/n};
Ã = {x ∈ A|x ≥ g(0n|A)/n}.
Figure 1 is helpful for understanding these sets. From the figure, we have

an insight of estimation of Ee
A for n = 2 as follow.

Ee
A =

eT · fPM(A)

eT · z
≥ eT · b

eT · z
. (20)

Since eT · z ≥ eT · d, we know that

Ee
A =

eT · fPM(A)

eT · z
≥ eT · b

eT · z
≥ eT · a

eT · z
. (21)
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Fig. 1 A two dimensional example of Theorem 3.

Write a as a linear combination of z and d, then it follows that

Ee
A ≥ eT · a

eT · z
=

|da|
|dz|

+

(
1− |da|

|dz|

)
· e

T · d
eT · z

≥ |da|
|dz|

+

(
1− |da|

|dz|

)
· eT · d
eT · g(02|A)

=
|da|
|dz|

+

(
1− |da|

|dz|

)
· g1(0|A)

g1(0|A) + g2(0|A)

≥ |da|
|dp|

+

(
1− |da|

|dp|

)
· g1(0|A)
g1(0|A) + g2(0|A)

=
1

2
+

1

2
· g1(0|A)

g1(0|A) + g2(0|A)
≥ 1

2
+

1

2
· min{g1(0|A), g2(0|A)}

g1(0|A) + g2(0|A)
.

Hence, the lower bound of Ee
A in Theorem 3 for n = 2 is obtained.

The above gives us an idea of how to estimate the lower bound of Ee
A.

Proof : We first estimate Ee
A.

It is known that S is the convex hull of {0n, gi(0n−1|A)ei, i = 1, . . . n}.
From the definition of gi(·|A), together with A being compact, we know that
gi(0n−1|A)ei = (0n

−i : gi(0n
−i|A)) ∈ A, i = 1, . . . n. Since A is convex and

comprehensive, it is known that S ⊆ A. Note that z ∈ OP (A), hence with
S ⊆ A, it follows that z ∈ OP (S) or z /∈ S.

According to Theorem 2, we know that fPM(A) ≥ g(0n|A)/n, which im-
plies fPM(A) ∈ OP (Ã). Hence,

eT · fPM(A) ≥ min
x∈OP (Ã)

eT · x. (22)

For any given x ∈ OP (Ã), we then show that there exists a x̃ ∈ D such that
x̃ is a point on the segment ϕ, where the end points of ϕ are x and g(0n|A)/n.
From the definition of D, it is seen that D separates Rn

+ into two parts: finite
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part (denote it by I) and infinite part (denote it by II). The existence of x̃ is
shown by verifying that x and g(0n|A)/n are in different parts.

Since x ∈ OP (A), we have x ∈ II
∪

D, i.e., x is in part II. Note that
z ∈ OP (S) or z /∈ S, hence S ⊆ I ∪ D. It is clearly that L(g(0n|A)/n) = 1,
thus g(0n|A)/n ∈ S, which implies g(0n|A)/n ∈ I ∪D, i.e., g(0n|A)/n is in
part I. Since g(0n|A)/n ∈ I ∪D, x ∈ II ∪D and ϕ is the segment determined
by x and g(0n|A)/n, we have ϕ∩D ̸= ∅ which implies ∃x̃ ∈ D∩ϕ, i.e., x̃ ∈ D
such that x̃ is a point on the segment ϕ.

Since x ∈ OP (Ã), it is known that x ≥ g(0n|A)/n, which implies x ≥ x̃ ≥
g(0n|A)/n. Hence x̃ ∈ D̃,which implies

eT · x ≥ eT · x̃ ≥ min
y∈D̃

eT · y. (23)

Because (23) holds for any given x ∈ OP (Ã), applying (23) to (22) leads
to

eT · fPM(A) ≥ min
x∈D̃

eT · x. (24)

According to the definition of D, ∀x ∈ D̃ ⊆ D, there must be a y ∈ S̃ such
that x is on the segment with two end points y and z. Write x as a linear
combination of y and z: x = t(x)z + (1 − t(x))y, t(x) ∈ [0, 1]. Since y ∈ S̃,
assume the kth coordinate of y is zero, i.e., yk = 0. With x ∈ D̃, we have
x = t(x)z+ (1− t(x))y ≥ g(0n|A)/n, which implies,

t(x)zk + 0 ≥ gk(0n−1|A)/n. (25)

Since z ∈ OP (A), according to Assumption 2, we know that zk = gk(z−k|A) ≤
gk(0n−1|A). Therefore, by (25), we have t(x) ≥ 1/n. Hence ∀x ∈ D̃, we have

eT · x = eT · (t(x)z+ (1− t(x))y) = t(x)(eT · z− eT · y) + eT · y. (26)

From y ∈ S̃ ⊆ A and eT · z = maxx∈A eT · x, we have eT · z ≥ eT · y. Hence,
applying t(x) ≥ 1/n to (26), it holds that

eT · x ≥ 1

n
(eT · z− eT · y) + eT · y. (27)

Since y ∈ S̃, we have 1 = L(y) =
∑n

i=1(yi/g
i(0n−1|A)), which implies

1 ≤
∑n

i=1(yi/min1≤j≤n g
j(0n−1|A)), i.e.,

min
1≤j≤n

gj(0n−1|A) ≤
n∑

i=1

yi = eT · y. (28)

According to z ∈ OP (A) together with Assumption 2, we have z =
g(z|A) = (g1(z−1|A), . . . , gn(z−n|A)) ≤ (g1(0n−1|A), . . . , gn(0n−1|A)) = g(0n|A).
Hence,

eT · z ≤
n∑

i=1

gi(0n−1|A). (29)
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From (24), (27), (28) and (29), we have

Ee
A =

eT · fPM(A)

eT · z
≥ min

x∈D̃

eT · x
eT · z

≥ min
x∈D̃

(
1

n
+

n− 1

n

eT · y
eT · z

)
≥ 1

n
+

n− 1

n
· min1≤i≤n g

i(0n−1|A)
Σn

i=1g
i(0n−1|A)

.

(30)

Now for Eg
A, we know from definition that Ee

A = Eg
A when gi(0n−1|A) are

equal for all i = 1, ..., n. Together with Eg
A being scale invariant, we know that

Eg
A ≥ 1

n
+

n− 1

n
· 1
n
=

2n− 1

n2
. (31)

Finally for Ef
A, we estimate maxx∈A

∑n
i=1[f

i(A)]−1 · xi directly. Since
A is compact, there is an x∗ ∈ A such that maxx∈A

∑n
i=1[f

i(A)]−1 · xi =∑n
i=1[f

i(A)]−1 · x∗
i . Note that fPM(A) is Pareto optimal, there exists at least

one coordinate m such that fm(A) ≥ x∗
m. And for any other i ̸= m, we

have from Theorem 2 that f i(A) ≥ gi(0n−1|A)/n ≥ x∗
i /n. Thus we have∑n

i=1[f
i(A)]−1 · x∗

i ≤ 1 + (n− 1) · n. And hence we obtain

Ef
A =

n∑n
i=1[f

i(A)]−1 · x∗
i

≥ n

n2 − n+ 1
. (32)

This completes the proof.�

Remark. Based on Theorem 3, we obtain three types of POFs with respect
to EPM solution:

POF e
A(EPM)

.
= 1− Ee

A ≤ n− 1

n
{1− min1≤i≤n g

i(0n−1|A)
Σn

i=1g
i(0n−1|A)

}, (33)

POF g
A(EPM)

.
= 1− Eg

A ≤ (n− 1)2

n2
(34)

and

POF f
A(EPM)

.
= 1− Ef

A ≤ (n− 1)2

n2 − n+ 1
. (35)

According to Bertsimas et al. (2011) together with the facts that Ef
A(N) ≡

1 and Ef
A(KS) ≡ Eg

A(KS), we have (when gi(0n−1|A) are equal for all i =
1, ..., n)

POF e
A(N) = POF g

A(N) ≤ (
√
n− 1)2

n
, POF f

A(N) ≡ 0 (36)

and

POF e
A(KS) = POF g

A(KS) = POF f
A(KS) ≤ (n− 1)2

(n+ 1)2
. (37)

Comparing the three solutions (Nash, KS and EPM), we know that the
POFs of the Nash solution have the lowest upper bounds while those of the
EPM solution have the highest upper bounds when the bargaining game is
normalized. Therefore, the Nash solution is the most efficient one among the
three solutions while the EPM solution is the most inefficient.
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5 Examples

In this section, we give examples to show that the bounds in Theorem 3 are
asymptotically tight. (In general, a bound is called asymptotically tight, if
there exists a sequence of samples such that the bound is achieved by taking
a limit of this sequence.) Before we present the examples, an extension of Bn

+

given by Calvo and Gutierrez (1994) is introduced.
In the original definition of the PM path, gi(·|A) is in the class of C2(Ai),

which excludes an interesting class of polygonal games (i.e., OP (A) is the
union of pieces of hyper-planes). For polygonal games, gi(·|A) is C2 almost
everywhere in Ai. Calvo and Gutierrez (1994) extend Bn

+ to Bn
+ ∪ P0, where

P0 contains all the compact set A satisfying Assumptions 2 and OP (A) being
the union of pieces of hyper-planes. They have proved that there exists a
unique EPM solution defined on Bn

+∪P0. In this section, we focus on a subset
of Bn

+ ∪ P0, i.e., B
n
+ ∪ P ∗

0 , where P ∗
0 contains all the bargaining set A that

satisfies Assumptions 1, 2 and OP (A) being the union of pieces of hyper-
planes.

Now we briefly introduce the extension given by Calvo and Gutierrez
(1994). Recall that a PM path is characterized by the ordinary differential
equations (2), which depend on a vector-valued function h(x|A). For A ∈ Bn

+,
h(x|A) can be obtained by the eigenvalue and eigenvector equation (1). How-
ever, for A ∈ Bn

+ ∪ P ∗
0 , the eigenvalue and eigenvector equation (1) is not

enough to obtain h(x|A) because gi(·|A) may not be differentiable at some
points in Ai. To overcome this difficulty, Calvo and Gutierrez (1994) change
the part ii.2) of Definition 3 to that, the tangent vector of C(A) at x is collinear
to the tangent vector at g(x|A) for x ∈ C(A)

∩
A almost everywhere.

Specifically, they denote △ = {h|h ≥ 0n, eT · h = 1} and a function
dx : △ → Rn as follows,

dx(h|A) = lim
t>0,t→0

g(x+ th|A)− g(x|A)
t

. (38)

Calvo and Gutierrez (1994) show that dx(h|A) = (eT ·dx(h|A))h has a unique
solution h∗(x|A) = (h∗

1(x|A), . . . , h∗
n(x|A)) ∈ △. Hence dx(h∗(x|A)|A) =

λ∗(x|A)h∗(x|A), where λ∗(x|A) = eT ·dx(h∗(x|A)|A). Furthermore, they have
proved that this approach is equivalent to solving the eigenvalue and eigen-
vector equation at every point x ∈ A such that g(x|A) is differentiable at
x.

Similar to Theorems 1 and 2, we can prove the next two theorems (see
Appendix).

Theorem 4 ∀A ∈ Bn
+ ∪ P ∗

0 , x = (x1, . . . , xn)
T ∈ A and x /∈ OP (A), we have

|λ∗(x|A)| ≤ n− 1.

Theorem 5 ∀A ∈ Bn
+ ∪ P ∗

0 , fPM(A) ≥ g(0n|A)/n.

Applying Theorem 5 to the proof of Theorem 3, we have the following
theorem.
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Theorem 6 ∀A ∈ Bn
+ ∪ P ∗

0 ,

Ee
A ≥ 1

n
+

n− 1

n
· min1≤i≤n g

i(0n−1|A)
Σn

i=1g
i(0n−1|A)

, (39)

Eg
A ≥ 2n− 1

n2
(40)

and
Ef

A ≥ n

n2 − n+ 1
. (41)

Now, we give the examples to show the bounds in Theorem 6 are asymptoti-
cally tight. In text, we only give the results of our examples, all the calculations
are in the Appendix.

Assume 0 < q1 ≤ q2 ≤ . . . ≤ qn, and for s ∈ (0, 1) define the following
linear functions

pi(x|s) = (1− s)
xi

qi
+ sΣn

j=1

xj

qj
, i = 1, . . . , n. (42)

For 0 < s < t < 1/n, consider the following bargaining set

A(t, s) = {x|x ≥ 0, p1(x|t) ≤ 1, pi(x|s) ≤ 1, i = 2, . . . , n}. (43)

Then we have gi(0n−1|A(t, s)) = qi for all 0 < s < t < 1/n and i = 1, ..., n.
The calculation in Appendix will show us that

lim
t→0

lim
s→0

Ee
A(t,s) =

1

n
+

n− 1

n
· q1

Σn
i=1q

i
, (44)

lim
t→0

lim
s→0

Eg
A(t,s) =

2n− 1

n2
(45)

and
lim
t→0

lim
s→0

Ef
A(t,s) =

n

n2 − n+ 1
. (46)

Therefore, the lower bounds in Theorem 6 are asymptotically tight. To
be more intuitively, Figure 2 is given to show that these lower bounds are
asymptotically tight when n = 2 (A(t) = lims→0 A(t, s)).

6 Conclusions

This paper aims to quantify the system efficiency of the EPM solution of Nash
bargaining problem and to obtain asymptotically tight lower bounds for three
measures. The lower bounds decreases as the number of players increases in a
relationship of inverse proportion.

On the other hand, Pallaschke and Rosenmuller (2007) give another exten-
sion of the two-player PM solution for the cephoidal bargaining problem. They
have shown that their approach satisfies the axioms suggested by Perles and
Maschler (1981) in a sub-class of the cephoidal bargaining problems. Finding
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Fig. 2 Two dimensional examples to show the tightness.

lower bounds of this solution can be a future work.

Acknowledgments This research has been supported by the National Natural Science
Foundation of China (projects 71031005 and 71210002).

Appendix

Proof of Theorem 4

For a given x satisfying the condition in the theorem, it is clear that gi(x−i|A) > xi

because x ∈ A and x /∈ OP (A). Consider the following matrix

J∗ = diag{g1(x−1|A)− x1, . . . , g
n(x−n|A)− xn}. (47)

Then define function ḡ(t,k) = (ḡ1(t,k), . . . , ḡn(t,k))T = J−1
∗ (g(x + tJ∗k|A) − x) for t ∈

[0,+∞) and k ∈ Rn
+. (Note that ḡ(t,k) is well defined for x+ tJ∗k ∈ A.)

Since dx(h∗(x|A)|A) = λ∗(x|A) · h∗(x|A), we have

λ∗(x|A) · h∗(x|A) = lim
t>0,t→0

g(x+ th∗(x|A)|A)− g(x|A)

t
. (48)

Hence, it holds that

λ∗(x|A) · J−1
∗ · h∗(x|A) = lim

t>0,t→0

J−1
∗ g(x+ tJ∗J

−1
∗ h∗(x|A)|A)− J−1

∗ g(x|A)

t
,

which leads to

λ∗(x|A) · k∗ = lim
t>0,t→0

ḡ(t,k∗)− ḡ(0,k∗)

t
, (49)

where k∗ = (k∗1 , . . . , k
∗
n)

T = J−1
∗ · h∗(x|A).

From Theorem 1, gi(·|A) is concave in Ai, by which eT ·g(x|A) is concave for all x ∈ A.
Therefore, we have, eT · ḡ(t,k) is concave for all k ∈ Rn

+ such that x+ tJ∗k ∈ A (i.e., ḡ(t,k)

is well defined), and eT · ḡ(t,k) is also concave for all t ∈ R+ such that x+ tJ∗k ∈ A.

Since x /∈ OP (A), for sufficient small t, we have x+tJ∗k∗ ∈ A and x+t(eT J∗k∗)·ei ∈ A,
∀i = 1, 2, . . . , n. Hence, from (49), together with eT · ḡ(t,k) being concave in k if it is well
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defined, we have

λ∗(x|A) · eT · k∗

= lim
t>0,t→0

eT · ḡ(t,k∗)− eT · ḡ(0,k∗)

t

≥ lim
t>0,t→0

∑n
i=1

k∗
i

eT ·k∗ (e
T · ḡ(t, (eT · k∗)ei)− eT · ḡ(0,k∗))

t
.

(50)

Since the last term in (50) is well defined for all t ∈ (0, (eT · k∗)−1], it is known that
ḡ(t, (eT · k∗)ei) is concave for t. Hence, we have from (50)

λ∗(x|A) · eT · k∗

≥ lim
t>0,t→0

∑n
i=1

k∗
i

eT ·k∗ (e
T · ḡ(t, (eT · k∗)ei)− eT · ḡ(0,k∗))

t

≥
∑n

i=1
k∗
i

eT ·k∗ (e
T · ḡ((eT · k∗)−1, (eT · k∗)ei)− eT · ḡ(0,k∗))

(eT · k∗)−1

=
n∑

i=1

k∗i (e
T · ḡ(1, ei)− eT · ḡ(0,k∗))

=
n∑

i=1

k∗i (e
T · J−1

∗ (g(x+ J∗e
i|A)− x)− eT · J−1

∗ (g(x|A)− x))

=
n∑

i=1

k∗i (1− n).

(51)

The last equality holds because x + J∗ei ∈ OP (A) (hence g(x + J∗ei|A) = x + J∗ei) and
J−1
∗ (g(x|A)− x) = eT . Therefore, we have obtained

λ∗(x|A) ≥ −(n− 1). (52)

Since g(x|A) is decreasing, from (49), it is easy to see λ∗(x|A) ≤ 0. Hence, we have
proved that |λ∗(x|A)| ≤ n− 1.�
Proof of Theorem 5

Proof : Here, we consider the same function W(u|A) in Theorem 2. Recall that the EPM
solution of A in Theorem 2 is fPM (A) = η(uPM |A). Then, we have already known that it is
sufficient to show W(u|A) is non-decreasing. However, we are not able to prove W′(u|A) ≥
0n because W(u|A) may not be differentiable. Here, we adopt another approach, that is to
prove the right-sided derivative of W(u|A) is non-negative, i.e., to prove

W′
+(u|A)

.
= lim

t>0,t→0

W(u+ t|A)−W(u|A)

t
≥ 0n, (53)

for all u ∈ [0, uPM ). (In a lemma after this theorem, we show that this condition guarantees
W(u|A) being non-decreasing.)

From Theorem 2, we have

W′
+(u|A) = (n− 1)η′+(u|A) + lim

t>0,t→0

g(η(u+ t)|A)− g(η(u)|A)

t
. (54)

Note that η(u|A) is strictly increasing, hence η′+(u|A) = h∗(η(u|A)|A) ≥ 0n. From η′+(u|A) ≥
0n and η′+(u|A) ̸= 0n, it follows that

lim
t>0,t→0

g(η(u+ t)|A)− g(η(u)|A)

t

= dη(u|A)(η′+(u|A)|A) = dη(u|A)(h∗(η(u|A)|A)|A)

= λ∗(η(u|A)|A)h∗(η(u|A)|A).

(55)
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Substituting (55) into (54) leads to

W′
+(u|A) = (n− 1 + λ∗(η(u|A)|A))h∗(η(u|A)|A). (56)

Then, from Theorem 4, it is known that W′
+(u|A) ≥ 0n, which completes the proof.�

Lemma 1 If f : [a, b) → R is a continuous function, and f ′
+(x) ≥ 0 for all x ∈ [a, b), then

f is increasing in [a, b).

Proof : Consider f(x) = f(x) + εx for x ∈ [a, b) and ε > 0. Then, f
′
+(x) ≥ ε. We first show

that f is increasing in [a, b).
If f is not increasing in [a, b), then there are c ∈ [a, b) and d ∈ [a, b) such that c <

d and f(c) > f(d). The continuity of f(x) in [c, d] implies that there exists θ ∈ [c, d]

such that f(θ) = supx∈[c,d] f(x). Since f(c) > f(d), we have θ ̸= d, hence ε ≤ f
′
+(θ) =

limt>0,t→0
f(θ+t)−f(θ)

t
≤ 0, which is in contradiction with ε > 0! This means that f is

increasing in [a, b).
From the increasing property of f in [a, b), ∀a ≤ c ≤ d < b, we have f(d) ≥ f(c), i.e.,

f(d) ≥ f(c)+ε(c−d). Let ε → 0, it follows that f(d) ≥ f(c). This means that f is increasing
in [a, b).�

Calculation of the examples
We need to show that A(t, s) ∈ P ∗

0 , i.e.,A(t, s) satisfies Assumptions 1, 2 andOP (A(t, s))
being the union of pieces of hyper-planes. It is easy to see from the definition of A(t, s) that
A(t, s) is convex, compact, comprehensive and OP (A(t, s)) is the union of pieces of hyper-
planes. Hence, we only need to verify that A(t, s) satisfies Assumption 2. According to the
definition of A(t, s), ∀x ∈ A(t, s), we have

g1(x−1|A(t, s)) = min

q1 − t
∑
i ̸=1

q1xi

qi
,min
j ̸=1

 q1 − q1xj

s
−

∑
i ̸=1,j

q1xi

qi


 .

And ∀k = 2, . . . , n,

gk(x−k|A(t, s)) =

min

qk − s
∑
i ̸=k

qkxi

qi
,
qk − qkx1

t
−

∑
i̸=k,1

qkxi

qi
, min
j ̸=1,k

 qk − qkxj

s
−

∑
i ̸=k,j

qkxi

qi


 .

It is easy to see that gk(0n−1|A(t, s)) = qk and gk(·|A(t, s)) is continuous and strictly
decreasing, ∀k = 1, . . . , n. For any given k ∈ {1, . . . , n}, we show that x ∈ OP (A(t, s)) ⇐⇒
xk = gk(x−k|A(t, s)).

If x ∈ OP (A(t, s)), then p1(x|t) ≤ 1, pi(x|s) ≤ 1, i = 2, . . . , n, and at least one of them
is equality, which implies xk = gk(x−k|A(t, s)).

If xk = gk(x−k|A(t, s)), then p1(x|t) ≤ 1, pi(x|s) ≤ 1, i = 2, . . . , n, and at least one of
them is with equality. Assume pl(x|r) = 1 where 1 ≤ l ≤ n and r ∈ {s, t}. If x /∈ OP (A(t, s)),
then ∃y ∈ A(t, s) such that y ≥ x and y ̸= x. Since each coefficient in pl(·|r) is strictly
positive, we have pl(y|r) > 1, which leads to a contradiction with y ∈ A(t, s). Hence,
x ∈ OP (A(t, s)).

Therefore,A(t, s) satisfies Assumption 2, which implies A(t, s) ∈ P ∗
0 . Since g

k(0n−1|A(t, s)) =
qk for k = 1, . . . , n, it is known that the maximum achievable profit for the kth player is qk.

A two dimensional example of A(t, s) is shown in Figure 3. Since OP (A(t, s)) is the union
of pieces of hyper-planes, we know that gi(·|A(t, s)) is piecewise linear in Ai(s, t). Therefore,
G(x|A(t, s)) = ∂g(x|A(t, s))/∂x is a piecewise constant matrix in A(t, s) (i.e., G(x|A(t, s))
is a constant matrix in each piece of A(t, s)). Hence, the tangent vector h∗(x|A(t, s)) of
C(A(t, s)) is a piecewise constant vector, which indicates that C(A(t, s)) is piecewise linear.
Because C(A(t, s)) is piecewise linear, finding the points on the PM path of A(t, s) which
are not differentiable is enough to determine the PM path C(A(t, s)).
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Fig. 3 A two dimensional example of A(t, s).

Since C(A(t, s)) starts from 0n, we need to calculate G(0n|A(t, s)) and h(0n|A(t, s)).
Note that in a small local area of 0n, it follows that

g1(x−1|A(t, s)) = 1− t
∑
j ̸=1

q1xj

qj
,

gi(x−i|A(t, s)) = 1− s
∑
j ̸=i

qixj

qj
, 2 ≤ i ≤ n.

(57)

Hence

G(0n|A(t, s)) =


0 −tq1

q2
. . . −tq1

qn

−sq2

q1
0 . . . −sq2

qn

.

..
.
..

. . .
.
..

−sqn

q1
−sqn

q2
. . . 0

 ,

h(0n|A(t, s)) =

(
1,

q2ϵ

q1
, . . . ,

qnϵ

q1

)T

,

(58)

where

ϵ =
(n− 2)s+

√
(n− 2)2s2 + 4(n− 1)st

2(n− 1)t
. (59)

Then, the PM path C(A(t, s)) starts from 0n and moves along the direction h(0n|A(t, s))
until reaching the point y where gi(·|A(t, s)) is not differentiable at y−i for i ∈ {2, . . . , n}.
Then, y satisfies that ∀i ∈ {2, . . . , n}, (y−i : gi(y−i|A(t, s))) is in the intersection of two
hyper-planes p1(x|t) = 1 and pi(x|s) = 1. Consequently, we have

y = bq1h(0n|A(t, s)) = (bq1, bϵq2, . . . , bϵqn)T , (60)

where

b =
1− t

1− st+ t(1− s)(n− 2)ϵ
. (61)

For any x ∈ A(t, s) and x > y, we have

g1(x−1|A(t, s)) = q1 − t
∑
j ̸=1

q1xj

qj
,

gi(x−i|A(t, s)) =
qi

t
−

∑
j ̸=1,i

qixj

qj
−

qix1

tq1
, 2 ≤ i ≤ n.

(62)
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The above leads to

G(x|A(t, s)) =


0 −tq1

q2
. . . −tq1

qn

−q2

tq1
0 . . . −q2

qn

..

.
..
.

. . .
..
.

−qn

tq1
−qn

q2
. . . 0

 ,

h(x|A(t, s)) =

(
1,

q2

q1t
, . . . ,

qn

q1t

)T

.

(63)

Then, the PM path starts again from y and moves along the direction h(x|A(t, s)) until
reaching the EPM solution fPM(A(t, s)) in the hyper-plane p1(x|t) = 1. Hence,

fPM(A(t, s)) = y + cq1h(x|A(t, s)), (64)

where

c =
1− b− tϵb(n− 1)

n
. (65)

So far, we have found the EPM solution fPM(A(t, s)). Next, we estimate the system
efficiency.

Assume that z is the intersection of the hyper-planes p1(x|t) = 1 and pi(x|s) = 1 for all
i = 2, . . . , n. Then, we have

z =

(
(1 + (n− 2)s− (n− 1)t)q1, (1− s)q2, . . . , (1− s)qn

)T
1 + (n− 2)s− (n− 1)st

. (66)

Let s → 0, we have ϵ → 0, b → 1−t and c → t/n, then let t → 0 we have fPM(A(t, s)) →
(q1, q2/n, ..., qn/n) and z → (q1, q2, ..., qn).

Therefore, we have the following inequalities

lim
t→0

lim
s→0

Ee
A(t,s) ≤ lim

t→0
lim
s→0

eT · fPM(A(t, s))

eT · z
=

1

n
+

n− 1

n
·

q1∑n
i=1 q

i
, (67)

lim
t→0

lim
s→0

Eg
A(t,s)

≤ lim
t→0

lim
s→0

∑n
i=1(q

i)−1 · f i(A)∑n
i=1(q

i)−1 · zi
=

2n− 1

n2
(68)

and
lim
t→0

lim
s→0

Ef
A(t,s)

≤ lim
t→0

lim
s→0

n∑n
i=1[f

i(A)]−1 · zi
=

n

n2 − n+ 1
. (69)

Together with Theorem 6, we know that the above inequalities become equalities, hence
the bounds given in Theorem 6 are asymptotically tight.
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