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Abstract

This paper deals with the single machine scheduling problem with multiple financial resource constraints. It is shown
that the problem can be reduced to the two machine flow shop scheduling problem if the financial resources arrive
uniformly over time, and it is also shown that the LPT (Largest Processing Time) rule generates an optimal solution to
the problem if the financial resources are consumed uniformly by all the jobs. Hence there exist polynomial algorithms
for these two special cases of the problem. © 1997 Elsevier Science B.V.
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1. Introduction

This paper deals with the single machine sched-
uling problem with multiple financial resource
constraints. A financial resource is a typical
non-renewable resource which is arriving dy-
namically over time and will be actually con-
sumed by the jobs competing for it. There are
k different types of financial resources which
are required to process n jobs. In each time
period ¢t an amount of o, (h=12, ...,k
t = 1,2, ...) units of resource h is arriving. To pro-
cess job j an amount of ry (j=12, ...,m
h=1.2,...,k) units of resource h must be avail-
able at its starting time and these amounts of
resources are completely consumed by job j. The
problem is to find a schedule to minimize the
makespan.
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In case of arbitrary resource requirements and
availability, Carlier [1] proved that the non-preem-
ptive single machine scheduling problem with
financial constraints is NP-complete if job process-
ing times are different from unity. When money is
the only resource and the jobs are precedence-
related, Carlier and Rinnooy Kan [2] developed
a polynomial algorithm. For the preemptive paral-
lel machine scheduling problems with financial
constraints, Slowinski [4] presented a polynomial
algorithm. Under the assumption that there exists
only one financial resource and it arrives uniformly
(i.e. the arriving amount of this resource is constant
over time periods), Toker et al. [5] proved that
the single machine scheduling problem can be re-
duced to the two machine flow shop scheduling
problem [3]. Using FC; (k is omitted when k = 1)
to stand for that there are k different types of
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financial resources, the result of Toker et al. [5] can
be rewritten as follows:

The scheduling problem 1/FC: o, = 1/C ., can be

reduced to the two machine flow shop scheduling

problem F2//C,...

This paper generalizes this result to the problem
with multiple financial resource constraints. It is
shown that the problem can be reduced to the two
machine flow shop scheduling problem if the finan-
cial resources arrive uniformly over time, and it is
also shown that the LPT (Largest Processing Time)
rule is optimal if the financial resources are con-
sumed uniformly by all the jobs. Hence there exist
polynomial algorithms for these two special cases
of the problem.

2. Polynomial algorithms

Theorem 1. The scheduling problem 1/FCy
Oy = 1/Cpnax can be reduced to k two machine flow
shop scheduling problems F2//C .

Proof. Consider the scheduling problem 1/FC;:
O = 1/Cpax- The n jobs are labeled as J;
(j=12,...,n). Let p; be the processing time of
J; and rj the amount of financial resource
k(1 < h < k) required to process job J;. For a given
schedule, let J| ;; be the job at the jth position. Then
rye is  the amount of financial resource
h (1 < h < k) required to process job J;;; and pyj; is
the processing time of job Ji ;. Let I;;; be the idle
time on the machine before job J;; is processed.
Since one unit of each resource becomes available
each period,

Iy = max {rum}, (1)
I<h<k

and
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From (1) and (3), the total idle time becomes
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where

B
Chax = Z Py + max {r[llha Z Tiith —

2<jg<n i=

-1

Z P[il}
=1

(1 <h<k). (6)

Now consider the scheduling problem F2//C,,.,.
Let pj; and p;, be the processing times of job J; on
the first machine and the second machine, respec-
tively. Clearly there is no idle time between the jobs
on the first machine. For a given schedule, let J;;; be
the job at the jth position and I{;; be the idle time
on the second machine before job Jy;; is processed.
Then

Ity = punt s (7
and
ji-1
~% fal
i=1
(j=2,3,...,n). (8)
From (7) and (8), we have
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Hence the makespan is

Chax = z Pz + max {P[l]l, Z Pt

i= 2<j<n i=

j-1
- Z P[i]z}- (10)

In comparison of Eq. (10) with (6), taking r;; and
p; of the scheduling problem 1/FC,: ay, = 1/C,., as
pi1 and p;, of the problem F2//C,,.,, respectively, it
is known that Egs. (10) and (6) are identical for any
given h (1 < h < k). This completes the proof.

Corollary 1. The problem 1/FC,: ay, = 1/C,.x can
be solved in O(knlogn) time.

Proof. Since the two machine flow shop scheduling
problem F2//C,,., can be solved in O(nlogn) time
[3], Corollary 1 is true according to Theorem 1.

Theorem 2. The LPT (Largest Processing Time)
rule generates an optimal solution to the scheduling
problem 1/FCy: rjp, = r,/Coax.-

Proof. Let the #»n jobs ©be labeled as
Ji(j=12,...,n) and p; be the processing time of
J;. For a given schedule, let J; ;; be the job at the jth
position and ¢; (j = 1,2, ... ,n) be the earliest time
possible to process the job J; ;. Then

t
t; = max mm{t: Y ac,,rzjxrh}
1<h<k =1

(j=12,....n). (11)

Let I} ; be the idle time on the machine before J ; is
processed. Then

I[l] - tl’ (12)
and
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i= i=1
(j=23,...,n) (13)

From (12) and (13), the total idle time is
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Hence the makespan is

n
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Noticing that t; (j =1,2, ... ,n) is independent
on the given schedule, the LPT rule generates an
optimal solution to the problem. This completes
the proof. [

Corollary 2. The problem 1/FCy: rj, = rp/Cpax can
be solved in O(nlogn) time.

Proof. Since the problem of sorting n numbers can
be solved in O(nlogn) time, Corollary 2 is true
according to Theorem 2.
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