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Abstract

Many experimental studies have demonstrated that human decision-makers
exhibit the pull-to-center effect in newsvendor decision. It has been shown in
the literature that prospect theory with a decision-dependent reference point
can predict the pull-to-center effect for the newsvendor problem by assuming
a uniform distribution of demand. In this paper, we prove this result for a
general case: prospect theory with a decision-independent reference point can
predict the pull-to-center effect for the newsvendor problem with a general
distribution of demand.

Keywords: Prospect theory; Newsvendor; Pull-to-center effect; Reference
point.

1. Introduction

In the past decade, behavioral operations management has garnered an
increasing amount of research interest. In a pioneering work, Schweitzer
and Cachon [1] conducted experiments to investigate the behavior of human
decision-makers based on newsvendor settings. They observed that the order
quantity of subjects exhibited a “pull-to-center” effect, i.e., the order quan-
tity was likely to fall in the range between the 0.5 fractile of the demand
distribution and the optimal solution. According to the newsvendor model,
settings with a critical fractile in the range [0, 0.5) are classified as low-profit
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margins, whereas those with a critical fractile in the range (0.5, 1] are classi-
fied as high-profit margins. The pull-to-center effect then represents the case
where the order quantity is too high for a low-profit-margin setting and too
low for a high-profit-margin setting. Using experimental data, Schweitzer and
Cachon [1] documented that prospect theory cannot predict the behavior of
subjects. Following Schweitzer and Cachon [1], many researchers conducted
numerous experiments to observe the pull-to-center effect.

Recently, Nagarajan and Shechter [2] use a model of prospect theory with
a power-type utility function to discuss its effectiveness in predicting the pull-
to-center effect. For a low-profit-margin setting with only positive profit, they
theoretically prove that the order quantity is lower than the optimal solution.
For a high-profit-margin setting with only positive profit, they numerically
show that the order quantity is higher than the optimal value. They then
claim that prospect theory cannot explain the pull-to-center effect.

In both [1] and [2], they assume the reference point to be zero, i.e., take
the status quo as reference. However, many evidences imply different possi-
bilities, e.g., as suggested by Heath et al. [3], that goals serve as reference
points is quite appropriate and can explain lots of empirical results. Taking
into consideration a non-zero reference point, Zhao and Geng [4] show that
prospect theory can satisfactorily predict the pull-to-center effect through
numerical calculations (but no analytical results). Furthermore, Long and
Nasiry [5] use a model with a decision-dependent reference point that is a
specified function of order quantity. For uniform distribution of demand,
they theoretically prove that the model can predict the pull-to-center effect.

In this discussion, we extend the analytical results in the literature to a
general case from two aspects: general distribution of demand, and decision-
independent reference point. Relaxing the demand from a uniform distribu-
tion to a general distribution is apparently significant. On the other hand,
adopting a decision-independent reference point is a popular scenario in de-
cision making (see, e.g., the literature on experimental economics, [6, 7, 8]).
When a person makes a decision, his/her reference point may be related to
contextual parameters, but should be less related to the decision he/she made
(see, e.g., [7]). From this perspective, we need to investigate the decision-
independent reference point, although a decision-dependent reference point
may have the advantage of being able to facilitate model analysis by specially
setting a function type. Consequently, the general case in the sense of a gen-
eral distribution of demand and a decision-independent reference point has
the value for developing further studies on the topic. (In a working paper,
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Uppari and Hasija [9] also considered a general distribution of demand, but
with a reference point that is associated with the mean demand. Intuitively,
a newsvendor may be contextual in terms of low- or high-profit-margin set-
ting to set his/her reference point accordingly, rather than anchoring on the
mean demand only. Hence, in contrast, in our analysis, we reveal a reference
point (possibly a set of reference points) that can lead to the pull-to-center
effect.)

2. Model Analysis

The basic setting is the classical newsvendor model. Suppose that the
marginal cost is w(> 0) and the selling price is p(> w). The demand D is a
random variable with support [d, d] where d > d > 0, and follows distribution
function F (·) with density function f(·). (All the results in this paper also
hold for the demand distribution with support [d,+∞).) Assume that F
and f are differentiable and F (d) = 0; F (x) = 1 − F (x). Moreover, let
F0.5 = F−1(0.5) denote the demand corresponding to the 0.5 fractile of F .
Apparently, for any distribution with the symmetric property at its mean µ,
such as a uniform distribution, a normal distribution, etc., F0.5 = µ. In this
paper, we do not require that F0.5 = µ, but general cases can apply.

The newsvendor makes a decision of order quantity q to maximize the
following expected profit function:

Π(q) = pEmin(D, q)− wq.

It is easy through standard analyses to obtain the optimal solution qc =
F−1(1−w/p). This standard optimal solution can be referred to the bench-
mark for decision makers to be perfectly rational.

However, it has been recognized that human decision-makers are not per-
fectly rational when making decisions. Kahneman and Tversky [10] devel-
oped the so-called prospect theory to characterize the behavior of human
decision-makers. They proposed a value function that is: 1) defined by devi-
ations from the reference point, 2) generally concave for gains and commonly
convex for losses, and 3) steeper for losses than for gains. Thus, in general,
the value function presents an S-shape.

For the newsvendor setting, if the realization of stochastic demand D is
x, the resultant profit for a decision q is given by

π(q, x) = pmin(x, q)− wq.
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Suppose that the newsvendor has reference point r. We assume that the
reference point is independent of decision q. Also note that the reference point
can be either negative or positive. To express the value function in prospect
theory, we use the exponential-type utility function u(y) = 1 − e−αy, where
coefficient α(> 0) characterizes the risk attitude. (It is well-known that the
power function and the exponential function are most popular for calculating
utility. In this study, we found that the exponential-type utility function
can relatively facilitate the model analysis, whereas the power-type utility
function seems to be intractable for model analyses.) The value function can
then be expressed as the following S-shaped utility function:

U(π|r) =

{
u(π − r), if π > r,

−λu(r − π), if π 6 r,

where the coefficient λ(> 1) characterizes the degree of loss aversion.
The objective of the newsvendor is to determine order quantity q (∈ [d, d])

to maximize the expected utility, i.e.,

max
q∈[d,d]

V (q|r) = EU (π(q,D)|r) . (1)

We denote the set of optimal solutions of problem (1) by Q∗(r). In the
subsequent analyses, we show that prospect theory can predict the pull-to-
center effect. For this purpose, we need to prove that there exists a value
r (possibly a set of r), using which the optimal solution q∗ (in Q∗(r)) to
problem (1) lies between F0.5 and qc, i.e., between the 0.5 fractile of the
demand distribution and the standard optimal order quantity.

Let I0 = [pd − wd, pd − wd], which is the set of all possible profits for
the newsvendor. For the case of the reference point r /∈ I0, problem (1)
degenerates to a risk-averse (or risk-seeking) newsvendor problem due to
always gain (or always loss) over q ∈ [d, d], which has been widely discussed
in the literature. Therefore, we only focus on the case that r ∈ I0 in this
paper.

Before the analyses, we introduce the following notation:

I1 = [pd− wd, pd− wd], I2 = [pd− wd, pd− wd],

q1(r) =
r

p− w
, q2(r) =

pd− r

w
, q0(r) = max(q1(r), q2(r)),
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B =

{
r

∣∣∣∣∣r ∈ I2 and
dV (q|r)

dq

∣∣∣∣
q=q2(r)

< 0

}
.

Here, q1(r) is the breakeven point for reference point r ∈ I1, i.e., if the
order quantity is q1(r), the newsvendor’s highest possible profit equals the
reference point r. For reference point r ∈ I2, q2(r) is the breakeven point, i.e.,
if the order quantity is q2(r), the newsvendor’s lowest possible profit equals
r (when the realized demand is d). B is the set formed by all r in I2 such
that V (q|r) is decreasing near the point q = q2(r). Other than the above
notation, for a given r ∈ I0, we further define Q0(r) to be the solution set of
maxq∈(q0(r),d)V (q|r). (Possibly, Q0(r) may be an empty set for some r.)

With the above preliminaries, we present our main results. All proofs are
presented in Appendix A (see the Online Supplements).

Proposition 1. For any given r ∈ I0, V (q|r) is decreasing or unimodal
when q ∈ [q0(r), d].

This proposition guarantees that the solution set of maxq∈[q0(r),d] V (q|r)
is an interval or a singleton set. With Proposition 1, we have the following
result.

Proposition 2. (1) If r ∈ [(p − w)d, (p − w)qc] ∪ (I2 \ B), then Q∗(r) ⊆
Q0(r) ∪ {q0(r)};
(2) If r ∈ ((p− w)qc, (p− w)d], then Q∗(r) ⊆ Q0(r) ∪ (qc, q0(r)];
(3) If r ∈ B, then Q∗(r) = {q∗} is a singleton set, and q∗ satisfies M(q∗) = 0,
where

M(q) = −w

∫ q

0

u′(px− wq − r)f(x)dx+ (p− w)u′(pq − wq − r)F (q).

The above proposition provides us with a preliminary view of the solution
to problem (1). The first part indicates that the optimal order quantity is
greater than or equal to q0(r), conditioned on r. The second part indicates
that the optimal order quantity is greater than qc, conditioned on r. The
third part implies the case where, when the reference point is under a certain
condition, the problem degenerates to a risk-averse problem and, hence, the
optimal order quantity is smaller than qc.

Theorem 1. For a high-profit-margin setting, i.e., p > 2w, if 1 6 λ 6 p−w
w

,
there exists a nonempty set AH ⊆ [(p−w)d, (p−w)F0.5), such that for r ∈ AH ,
Q∗(r) = {q∗} is a singleton set with q∗ ∈ (F0.5, qc).
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It has been shown that human decision-makers exhibit a bias toward
loss aversion when making decisions [11, 12]. The loss-averse attitude is
characterized by the coefficient λ > 1. Then, Theorem 1 indicates that
for a reasonable reference point, the order quantity is greater than the 0.5
fractile of the demand distribution and lower than the standard optimal
order quantity, which is consistent with the experimental observations in
the literature. Thus, prospect theory predicts the pull-to-center effect for
high-profit-margin settings.

Theorem 2. For a low-profit-margin setting, i.e., p < 2w, if f ′(x) > 0 for
all x ∈ [d, F0.5], there exists a nonempty set AL ⊆ (pd − wqc, (p − w)F0.5),
such that Q∗(r) ⊆ (qc, F0.5) for r ∈ AL.

Many common distributions, such as a uniform distribution, a normal
distribution, a logistic distribution, etc., satisfy condition f ′(x) > 0 for all
x ∈ [d, F0.5]. With this condition, Theorem 2 indicates that for a reasonable
reference point, the order quantity is greater than qc and less than F0.5, which
is consistent with the experimental observations in the literature. Thus,
prospect theory can predict the pull-to-center effect for low-profit-margin
settings.

The following algorithm provides the detailed caluculation steps for AH

and AL, where

H(q, r) = −λw
∫ r+wq

p

d

u′(r+wq−px)f(x)dx−w
∫ q

r+wq
p

u′(px−wq−r)f(x)dx+(p−w)u′(pq−wq−r)F (q).

Furthermore, we define inf ∅ = +∞ in this paper.
Algorithm 1.
Step 1: If p > 2w, go to Step 2; Otherwise, go to Step 4.
Step 2: If H(F0.5, (p − w)d) > 0, let r1 = inf{r|r ∈ ((p − w)d, (p −
w)F0.5) and H(qc, r) = 0}, r2 = inf{r|r ∈ ((p−w)d, (p−w)F0.5) and H(F0.5, r) =
0}, and set AH = [(p− w)d,min(r1, r2, (p− w)F0.5)), stop; Otherwise, go to
Step 3.
Step 3: Let r3 = sup{r|r ∈ [(p − w)d, (p − w)F0.5] and H(F0.5, r) = 0},
r4 = inf{r|r ∈ [r3, (p−w)F0.5] and H(qc, r) = 0}, and set AH = (r3,min((p−
w)F0.5, r4)), stop.
Step 4: If H(qc, (p − w)qc) > 0, let r5 = sup{r|r ∈ (pd − wqc, (p −
w)qc) and H(qc, r) = 0}, r6 = inf{r|r ∈ (r5, (p−w)F0.5] and H(F0.5, r) = 0},
and set AL = (r5,min(r6, (p− w)F0.5)), stop; Otherwise, go to Step 5.

6



Step 5: Let r7 = inf{r|r ∈ ((p−w)qc, (p−w)F0.5] and H(F0.5, r) = 0}, and
set AL = [(p− w)qc,min(r7, (p− w)F0.5)), stop.

The validity of the above calculation steps can be referred to the proofs
of Theorem 1 and Theorem 2.

Then, for any given reference point in AH (or in AL), we can search the
corresponding optimal order quantity with consideration of Proposition 1
and Proposition 2.

We end this section with two observations. First, prospect theory consists
of three behavioral parameters: risk attitude α, loss attitude λ, and reference
point r. We have proved the existence of reference point r within a certain
range that leads to the optimal solution q∗ of problem (1) lying between F0.5

and qc. Note that this existence property depends on system parameters
(w, p, and D), and is true over reasonable scopes of behavioral parameters
α(> 0) and λ(> 1). In an experiment, subjects may have their individual
behavioral parameters α and λ. Hence, their reference points can be different,
which can either fall into the ranges AH and AL or be out of these ranges.
Second, in the literature, almost all relevant studies have been conducted
using demand distributions that are symmetric at the mean, i.e., F0.5 = µ.
The case F0.5 = µ is a special case of our model. Consequently, our results
can predict the pull-to-center effect not only for such a special case, but also
for more general cases.

3. Examples

In the experimental study in [1], the authors used parameters p = 12,
D ∼ U [0, 300], and w = 9 for a low-profit-margin setting and w = 3 for a
high-profit-margin setting. (Thus, the critical fractiles were 0.25 and 0.75
and the standard optimal solutions were 75 and 225 for the two settings,
respectively.) For the low-profit-margin setting, the feasible lowest profit
was −2700 whereas the feasible highest profit was 900. For the high-profit-
margin setting, the feasible lowest profit was −900 whereas the feasible high-
est profit was 2700. From their experimental data, they observed that the
subjects’ decisions exhibited the pull-to-center effect. However, they were
not sure whether prospect theory could predict this effect. Following their
study, many researchers conducted similar experiments prompted by varying
motivations.

Using our model, we carry out calculations for this example. According to
[11], we set the coefficient of loss aversion to the mostly like value, i.e., λ = 2.
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Table 1: Scope of reference point that leads to the pull-to-center effect (D ∼ U [0, 300],
λ = 2).

High-profit-margin setting Low-profit-margin setting
α AH Q∗ Type AL Q∗ Type
0.1 (1299, 1350) (150, 156) N (191, 419) (75, 150) Y
0.01 (1060, 1350) (150, 180) Y (105, 365) (75, 150) Y
0.001 (118, 1350) (150, 204) Y [225, 450) (75, 114) N
0.0001 [0, 1350) (189, 205) N [225, 450) (75, 78) N

Table 2: Comparison with the case where r = 0 (D ∼ U [0, 300], λ = 2).

high-profit-margin setting
(qc = 225)

low-profit-margin setting
(qc = 75)

α = 0.1 q∗ = 7 q∗ = 12
α = 0.01 q∗ = 41 q∗ = 44
α = 0.001 q∗ = 148 q∗ = 50
α = 0.0001 q∗ = 204 q∗ = 48

Referring to a number of studies in the literature for the coefficient of risk
attitude, we use α = 0.1, 0.01, 0.001, and 0.0001. The calculation results are
shown in Table 1, from which we can see that large scopes for the reference
point lead to the pull-to-center effect. Moreover, we also provide the set of
optimal order quantities Q∗ corresponding to reference points r ∈ AH(AL) in
Table 1. In experiment 1 in [1], the average order quantities in the high- and
low-profit-margin settings are 176.68 and 134.06, respectively. Then, from
Table 1, as indicated by “Y” type, our model can predict these average order
quantities, although the model may fail to predict them in some scopes of
behavioral parameters, as indicated by “N” type.

Ignoring the reference point, as in some of the literature, we are interested
in whether prospect theory can be used to predict the pull-to-center effect.
Then, by setting r = 0, we calculate the order quantities, which are shown
in Table 2. Clearly, it shows that the results fail to follow the pull-to-center
effect. (Only for the high-profit-margin setting, q∗ = 204 for α = 0.0001 can
lead to the pull-to-center effect; this is because r = 0 has been included in
set AH for α = 0.0001 in Table 1.) Consequently, for prospect theory, the
reference point plays an important role in predicting the behavior of decision
makers.
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Table 3: Scope of reference point that leads to the pull-to-center effect (D ∼ U [900, 1200],
λ = 2).

High-profit-margin setting Low-profit-margin setting
α AH Q∗ Type AL Q∗ Type
0.1 (9399, 9450) (1050, 1056) N (2891, 3119) (975, 1050) Y
0.01 (9160, 9450) (1050, 1080) N (2805, 3065) (975, 1050) Y
0.001 (8218, 9450) (1050, 1104) Y [2925, 3150) (975, 1014) N
0.0001 [8100, 9450) (1089, 1105) Y [2925, 3150) (975, 978) N

In [1], to further examine the use of prospect theory to explain the pull-
to-center effect, the authors conducted additional experimental sessions with
D ∼ U [900, 1200]. (The resulting critical fractiles were 0.25 and 0.75 for the
two settings and the standard optimal solutions were 975 and 1125, respec-
tively.) The feasible profits lay between 0 and 3600 for the low-profit-margin
setting and between 7200 and 10800 for the high-profit-margin setting. That
is, for any decision of order quantity in [900, 1200], the profit was guaran-
teed to be positive. Then, for the case of only gain without loss, by ignoring
the reference point, prospect theory degenerated to a risk-averse model. It
is known that the order quantity is lower than the standard optimal order
quantity qc in a risk-averse model. However, Schweitzer and Cachon [1] stil-
l observed the pull-to-center effect in their experimental data, inconsistent
with the predictions of prospect theory. Using a model without a reference
point, Nagarajan and Shechter [2] recently provide an analytical proof for
the low-profit-margin setting and numerical calculations for the high-profit-
margin setting, by which the model predicts a deviation from the center.
Hence, they claim that prospect theory cannot predict the pull-to-center ef-
fect.

For this additional example, our model yields the opposite results. We use
the same coefficients of λ and α as in the previous example for calculation.
Again, we can see in Table 3 that considerable scopes of the reference point
lead to the pull-to-center effect. In Experiment 2 in [1], the average order
quantity in the high-profit-margin setting is 1092.55, and that in the low-
profit-margin setting is 1021.81. Then, from Table 3, our model can also
predict these average order quantities for considerable scopes of behavioral
parameters.

Furthermore, for this additional example, if we ignore the reference point,
as in some of the literature, our model degenerates to a risk-averse model. By
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Table 4: Comparison with the case where r = 0 (D ∼ U [900, 1200], λ = 2).

high-profit-margin setting
(qc = 1125)

low-profit-margin setting
(qc = 975)

α = 0.1 q∗ = 900 q∗ = 900
α = 0.01 q∗ = 900 q∗ = 921
α = 0.001 q∗ = 900 q∗ = 957
α = 0.0001 q∗ = 900 q∗ = 973

setting r = 0, we calculate the order quantities, with the results in Table 4.
Clearly, instead of predicting the pull-to-center effect, all order quantities are
lower than the standard optimal solutions; the model predicts a behavioral
tendency in the same way as a risk-averse model does. Again, the results
emphasize that for prospect theory, the reference point plays an important
role in predicting the behavior of decision makers.

In general, if a decision maker faces a context with higher feasible profit,
his/her reference point should also be greater. On the contrary, if a decision
maker faces a context with lower (even negative) feasible profit, his/her refer-
ence point should be smaller (even negative). Consider the previous example
of the low-profit-margin setting with p = 12 and D ∼ U [0, 300] again. If we
set the marginal cost w = 11, the feasible profit changes from −3300 to 300,
i.e., it becomes smaller. Then, with λ = 2 and α = 0.01, the calculation of
our model yields AL = (−8, 150), which contains negative reference points,
where all reference points can lead to the pull-to-center effect. By similar
lines, for other behavioral parameters, e.g., the risk attitude α and the loss
aversion λ, a decision maker should have different values of these parameters
depending on the context, not fixed over all contexts.

In the end of this section, we provide an additional discussion about the
prediction power of prospect theory for the pull-to-center effect. As shown in
the previous section, as well as in this section, prospect theory indicates that
a newsvendor will exhibit the pull-to-center effect if his/her reference point
falls into a certain range (i.e., AH or AL). Alternatively, for a newsvendor
whose reference point is out of the rangeAH orAL, possibly he/she may fail to
follow the pull-to-center effect. In fact, humans are heterogeneous in making
decisions, therefore it is not necessary for all newsvendors to follow the pull-
to-center effect. Indeed, in many experimental studies, considerable part
of subjects do not exhibit the pull-to-center effect in the sense of individual
level, although it does from the aggregate level over all subjects (see, e.g., the
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analysis in [13]). As a consequence, prospect theory can be a good candidate
to explain the decision behavior of newsvendors for predicting either the
pull-to-center effect or non-pull-to-center effects.

4. Concluding Remarks

In this paper, we analytically prove that prospect theory with a decision-
independent reference point can predict the decision behavior in the newsven-
dor problem with general distributions of demand. Our model is a typical
model of prospect theory, where all probabilities are used without weights, or
equivalently, the model uses a linear weighting function for probabilities. A
more general model of prospect theory is to use a nonlinear weighting func-
tion for probabilities [10, 12]. Obviously, the prediction power of the model
with a nonlinear weighting function for probabilities is stronger than the typ-
ical model, because the latter is a special one of the former. In this sense,
prospect theory (no matter typical model or general model) is powerful in
predicting the pull-to-center effect for the problem of newsvendor decision.

A number of experiments have been conducted in the literature, most of
which are based on the newsvendor setting with either a uniform or a normal
distribution of demand. For different motivations, other distributions can be
adopted, and decision-independent reference points when making decisions
might be more viable. Our work can be a bridge to connect the experimental
study with the model analysis in research on predicting the pull-to-center
effect.
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All the proofs for Propositions and Theorems related to this article are
provided as Online Supplements, which can be found at the journals website.
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Online Supplements on “Revisiting Prospect Theory and the

Newsvendor Problem”

Yuwei Shen, Xiaobo Zhao, Jinxing Xie

1 Preparatory Materials

For r ∈ I0, it is not difficult to verify that q1(r) > d > q2(r) if and only if r ∈ I1. Therefore, the

expected utility function V (q|r) in problem (1) can be expressed as

V (q|r) =


V0(q|r), if r ∈ I0 and q ∈ (q0(r), d],

V1(q|r), if r ∈ I1 and q ∈ [d, q0(r)]

V2(q|r), if r ∈ I2 and q ∈ [d, q0(r)],

(A.1)

where

V0(q|r) =
∫ r+wq

p

d
−λu(r+wq− px)f(x)dx+

∫ q

r+wq
p

u(px−wq− r)f(x)dx+ u(pq−wq− r)F (q),

V1(q|r) =
∫ q

d
−λu(r + wq − px)f(x)dx− λu(r + wq − pq)F (q),

V2 (q|r) =
∫ q

d
u(px− wq − r)f(x)dx+ u(pq − wq − r)F (q).

Lemma 1. For any given r ∈ I0: (1) if r ∈ I2, or r ∈ I1 and λ = 1, then V (q|r) is continuously
differentiable with respect to q ∈ [d, d]; (2) if r ∈ I1 and λ > 1, then V (q|r) is continuously

differentiable with respect to q ∈ [d, q1(r)) ∪ (q1(r), d], and is continuous at point q = q1(r) but

not differentiable at this point.

This lemma can be directly proved from (A.1), hence we omit the details here. This lemma

lays the foundation for all subsequent results.

Lemma 2. For any given r ∈ I0, if p > 2w, Q0(r) is a singleton or empty set.

Proof. From (A.1), we have V (q|r) = V0(q|r) for q > q0(r). Noting that any q ∈ Q0(r) must

satisfy dV (q|r)/dq = 0, we only need to show that there is at most one q ∈ (q0(r), d] satisfying

dV0 (q|r) /dq = 0. Define

Gr(q) =
1

αeα(r−wq)

dV0(q|r)
dq

.

1



Then we only need to prove that Gr(q) = 0 has at most one root. For this purpose, we calculate

the first derivative of Gr(q) as

dGr(q)

dq
=− 2αw2

∫ q

r+wq
p

eα(2wq−px)f(x)dx− α(p− w)(p− 2w)eα(2wq−pq)F (q)

− (λ− 1)
w2

p
eα(wq−r)f

(
r + wq

p

)
− peα(2wq−pq)f(q).

Noting that all the items in the righthand side are nonpositive and cannot be all zeros, we have

dGr(q)/dq < 0. That is, Gr(q) is strictly decreasing on (q0(r), d], so it has at most one zero

point. �

Lemma 3. For r ∈ I0, if f
′(x) > 0 on [d, F0.5] and q0(r) < F0.5, V (q|r) is strictly concave with

respect to q ∈ (q0(r), F0.5].

Proof. From (A.1), we have V (q|r) = V0(q|r) for q ∈ (q0(r), F0.5]. We only need to verify

d2V0(q|r)/dq2 < 0. In fact,

d2V0 (q|r)
dq2

=(1− λ)
w2

p
u′(0)f

(
r + wq

p

)
−pu′(pq−wq−r)f(q)−λw2

∫ r+wq
p

d
u′′(r+wq−px)f(x)dx

+ w2

∫ q

r+wq
p

u′′(px− wq − r)f(x)dx+ (p− w)2u′′(pq − wq − r)F (q)

=
w2−p2

p
u′(pq−wq−r)f(q)−λ

w2

p
u′(r+wq−pd)f(d)−λ

w2

p

∫ r+wq
p

d
u′(r+wq−px)f ′(x)dx

− w2

p

∫ q

r+wq
p

u′(px− wq − r)f ′(x)dx+ (p− w)2u′′(pq − wq − r)F (q)

<0.

The last inequality follows from the facts that u′ > 0, u′′ < 0 and f ′(x) > 0 on [d, F0.5]. �

2 Proofs of the Main Results

Proof of Proposition 1. It is difficult to complete the proof for the proposition by usual

calculus. In stead, we first show that the result holds for any stepwise cumulative distribution

function, and then a limiting argument is used to show that it also holds for general cumulative

distribution functions. The proof needs to be proceed in three stages as follows, and the detailed

procedure can be referred to [? ].

Stage 1: For any given r ∈ I0, if q > q0(r) and q /∈ Ω, V (q|r) is differentiable at q, where

Ω = {ω1, ω2, · · · } is the set of all the discontinuity points of any given stepwise cumulative

distribution function.

Stage 2: For any given r ∈ I0, dV (q|r) /dq is continuous at any q ∈ [q0(r), d] ∩ Ωc, and for

any qn ∈ [q0(r), d] ∩ Ω, limq→q−n
dV (q|r) /dq 6 limq→q+n

dV (q|r) /dq.
Stage 3: For i = 1, 2, · · · , one and only one of the followings holds:

(1) dV (q|r) /dq > 0 on (ωi, ωi+1) ∩ [q0(r), d],

(2) dV (q|r) /dq < 0 on (ωi, ωi+1) ∩ [q0(r), d],

(3) there exists a θ ∈ (ωi, ωi+1) ∩ [q0(r), d] such that dV (θ|r) /dq = 0, dV (q|r) /dq > 0 on

(ωi, θ) and dV (q|r) /dq < 0 on (θ, ωi+1). �
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Proof of Proposition 2. We consider the following two subproblems to solve problem (1) :

max
q∈[q0(r),d]

V (q|r) , (A.2)

and

max
q∈[d,q0(r)]

V (q|r) . (A.3)

The solution sets of subproblems (A.2) and (A.3) are denoted by Q∗
1(r) and Q∗

2(r) (Q
∗
1 and Q∗

2

for short), respectively. It is obvious that Q∗(r) ⊆ Q∗
1 ∪Q∗

2.

For subproblem (A.2), the optimum must be the boundary point q0(r) or d, or contained

in Q0(r). Noting that dV (d|r)/dq < 0, we know that d cannot be an optimum. Therefore,

Q∗
1 ⊆ Q0(r) ∪ {q0(r)}.
Now we turn to subproblem (A.3). First, we consider the case r ∈ I1, where V (q|r) = V1(q|r)

when q ∈ [d, q0(r)]. Note that, for q ∈ [d,min(qc, q0(r))],

dV1 (q|r)
dq

>λu′(r + wq − pq)(−wF (q) + (p− w)F (q))

=λu′(r + wq − pq)((p− w)− pF (q))

>λu′(r + wq − pq)((p− w)− pF (qc))

=0.

This implies that V (q|r) is strictly increasing in q ∈ [d,min(qc, q0(r))].

If r ∈ [(pd−wd, (p−w)qc], then q0(r) 6 qc. Therefore, we have Q∗
2 = {q0(r)}, which implies

Q∗(r) ⊆ Q∗
1 ∪Q∗

2 ⊆ Q0(r) ∪ {q0(r)}.
If r ∈ ((p − w)qc, (p − w)d], then q0(r) > qc. Therefore, any q ∈ [d, qc] is not an optimum

for V (q|r) under the constraint q ∈ [d, q0(r)]. Thus, Q∗
2 should be a subset of (qc, q0(r)], which

implies Q∗(r) ⊆ Q∗
1 ∪Q∗

2 ⊆ Q0(r) ∪ (qc, q0(r)].

Next, we consider the case r ∈ I2. Since V (q|r) = V2(q|r) when q ∈ [d, q0(r)], subproblem

(A.3) is equivalent to maxd6q6q0(r) V2(q|r). We can claim that V2(q|r) is a concave function with

respect to q because

d2V2 (q|r)
dq2

=w2

∫ q

d
u′′(px−wq−r)f(x)dx

+ (p− w)2u′′(pq−wq−r)F (q)− pu′(pq−wq−r)f(q)

<0.

The inequality follows from the facts u′ > 0 and u′′ < 0.

Note that
dV2 (q|r)

dq

∣∣∣∣
q=d

= (p− w)u′(pd− wd− r) > 0.

If r ∈ I2 \B,
dV2 (q|r)

dq

∣∣∣∣
q=q0(r)

> 0.

From the concavity of V2(q|r), V2 (q|r) is increasing in q ∈ [d, q0(r)], which implies Q∗
2 = {q0(r)}.

Therefore Q∗(r) ⊆ Q∗
1 ∪Q∗

2 ⊆ Q0(r) ∪ {q0(r)}.
If r ∈ B,

dV2 (q|r)
dq

∣∣∣∣
q=q0(r)

< 0.
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From the concavity of V2(q|r), Q∗
2 = {q∗} is a singleton set and q∗ is the solution of M(q) =

dV2(q|r)/dq = 0. Because (dV (q|r)/dq)|q=q0(r) = (dV2(q|r)/dq)|q=q0(r) < 0, V (q|r) is decreasing
in q > q0(r) by Proposition 1. Therefore, Q∗

1 = {q0(r)}, and problem (1) degenerates to sub-

problem (A.3), which means Q∗(r) = Q∗
2 = {q∗}. �

Proof of Theorem 1. Since p > 2w, we only need to prove that the set AH constructed in Al-

gorithm 1 works for this theorem. First, we show that dV (qc|r) /dq < 0 and dV (F0.5|r) /dq > 0

for r ∈ AH . Noting that H(q, r) = dV0 (q|r) /dq which is a continuous function, we only need to

prove H (qc, r) < 0 and H (F0.5, r) > 0 for r ∈ AH , since q0(r) < F0.5 < qc at this situation.

Because λ > 1, (p−2w)qc+px−2(p−w)d > (p−2w)(qc−d) > 0 for x > d, and p(qc−x) > 0

for x < qc, we have

H(qc, (p− w)d) =αe−α(p−w)(qc−d)

[
−λw

∫ wqc+(p−w)d
p

d
eα((p−2w)qc+px−2(p−w)d)f(x)dx

−w

∫ qc

wqc+(p−w)d
p

eαp(qc−x)f(x)dx+ (p− w)F (qc)

]
<αe−α(p−w)(qc−d)

[
−wF (qc) + (p− w)F (qc)

]
=0.

So we must have H(qc, r) < 0 for any r ∈ [(p−w)d,min(r1, (p−w)F0.5)) from the definition of r1.

For the caseH(F0.5, (p−w)d) > 0, H(F0.5, r) > 0 is also guaranteed for r ∈ [(p−w)d,min(r2, (p−
w)F0.5)). Then, for r ∈ AH = [(p−w)d,min(r1, r2, (p−w)F0.5)), dV (qc|r)/dq = H(qc, r) < 0 as

well as dV (F0.5|r)/dq = H(F0.5, r) > 0.

If H(F0.5, (p− w)d) 6 0, because λ 6 (p− w)/w and pF0.5 − px > 0 for x < F0.5, it follows

that

H(F0.5, (p− w)F0.5) =α

[
−λw

∫ F0.5

d
e−α(pF0.5−px)f(x)dx+ (p− w)F (F0.5)

]
>α [−0.5λw + 0.5(p− w)]

>0.

So we know that set {r|r ∈ [(p − w)d, (p − w)F0.5] and H(F0.5, r) = 0} is nonempty and r3 <

(p − w)F0.5 from the continuity of H with respect to r. The definition of r3 also tells the fact

that H(F0.5, r) > 0 for r ∈ (r3, (p − w)F0.5]. Noting that dV (F0.5|r3)/dq = H(F0.5, r3) = 0,

and Lemma 2 tells that Q0(r3) has at most one element, we must have Q0(r3) = {F0.5}. Since

qc > F0.5, H(qc, r3) = dV (qc|r3)/dq < 0 by Proposition 1. Since r4 = inf{r|r ∈ [r3, (p −
w)F0.5] and H(qc, r) = 0}, we must have H(qc, r) < 0 for r ∈ AH = (r3,min((p − w)F0.5, r4)).

Therefore, H(qc, r) < 0 and H(F0.5, r) > 0 for r ∈ AH .

We further prove that Q∗(r) ⊂ (F0.5, qc) for all r ∈ AH ⊆ [(p − w)d, (p − w)F0.5). Since

for r ∈ AH , dV (qc|r)/dq = H(qc, r) < 0 and dV (F0.5|r)/dq = H(F0.5, r) > 0, we know that

Q0(r) is a nonempty subset of (F0.5, qc). In addition, Lemma 2 implies that Q0(r) is a singleton

set. According to Proposition 2, Q∗(r) ⊆ Q0(r) ∪ {q0(r)}. Note that dV (F0.5|r)/dq > 0 and

Proposition 1 implies that V (F0.5|r) > V (q0(r)|r), we know q0(r) is not the local optimum.

Consequently, Q∗(r) = Q0(r) ⊂ (F0.5, qc) is a singleton set. �

Proof of Theorem 2. Since p < 2w, we only need to prove that the set AL constructed

in Algorithm 1 works for this theorem. We will show that Q∗(r) ⊆ (qc, F0.5) for r ∈ AL.
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Because −αpx > −αpqc for x < qc, it follows that

H(qc, pd− wqc) =αe−αp(qc−d)

[
−w

∫ qc

d
eαp(qc−x)f(x)dx+ (p− w)F (qc)

]
<αe−αp(qc−d)(−wF (qc) + (p− w)F (qc))

=0.

First, consider the case H(qc, (p − w)qc) > 0. For this case, the set {r|r ∈ (pd − wqc, (p −
w)qc) and H(qc, r) = 0} is nonempty. It is clear that H(qc, r) > 0 for r ∈ (r5, (p − w)qc) and

H(qc, r5) = 0. In addition, Lemma 3 implies that H(q, r) is strictly decreasing in q ∈ [q0(r), F0.5]

if r ∈ I0 and f ′(x) > 0 for x ∈ [d, F0.5]. Hence H(F0.5, r5) < H(qc, r5) = 0. Then for r ∈ AL =

(r5,min(r6, (p− w)F0.5)), we can claim H(F0.5, r) < 0.

If r ∈ AL ∩ (r5, (p − w)qc), we can observe that Q∗(r) ⊆ Q0(r) ∪ {q0(r)}. In addi-

tion, we have q0(r) < qc < F0.5, so dV (qc|r)/dq = dV0(qc|r)/dq = H(qc, r) > 0 as well as

dV (F0.5|r)/dq = dV0(F0.5|r)/dq = H(F0.5, r) < 0, thus we can claim that Q0(r) ⊆ (qc, F0.5).

Noting that dV (qc|r)/dq > 0 also implies that V strictly increases near point q = qc, we

have V (qc|r) > V (q0(r)|r) by Proposition 1. Hence, q0(r) is not the local optimum, and

Q∗(r) ⊆ Q0(r) ⊆ (qc, F0.5).

If r ∈ AL ∩ [(p − w)qc, (p − w)F0.5), we know qc 6 q0(r) < F0.5 and dV (F0.5|r)/dq =

dV0(F0.5|r)/dq = H(F0.5, r) < 0. By Proposition 1, we obtain V (q|r) 6 V (F0.5|r) for q > F0.5,

and thus Q∗(r) ⊆ (d, F0.5]. Therefore, Proposition 2 implies Q∗(r) ⊆ ((qc, q0(r)] ∪ Q0(r)) ∩
(d, F0.5] ⊆ (qc, F0.5).

Now turn to the case H(qc, (p−w)qc) 6 0. For this case, we know F0.5 > qc = q0(pqc−wqc),

and then H(F0.5, (p−w)qc) < H(qc, (p−w)qc) 6 0 by the fact that H(q, r) is strictly decreasing

in q ∈ [q0(pqc − wqc), F0.5] if f
′(x) > 0 for x ∈ [d, F0.5]. Then we must have H(F0.5, r) < 0

for each r ∈ AL = [(p − w)qc,min(r7, (p − w)F0.5)). Note that q0(r) < F0.5 for r ∈ AL,

dV (F0.5|r) /dq = dV0(F0.5|r)/dq = H(F0.5, r) < 0. It follows from Proposition 1 that V (q|r)
is decreasing in q > F0.5. Hence, the local optimum of problem (1) is less than F0.5, i.e.,

Q∗(r) ⊆ [d, F0.5). According to Proposition 2, Q∗(r) ⊆ (qc, q0(r)] ∪Q0(r) . Therefore, we have

Q∗(r) ⊆ ((qc, q0(r)] ∪Q0(r)) ∩ [d, F0.5) ⊆ (qc, F0.5). �
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