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Abstract

We consider the lost-sales inventory systems with stochastic lead times and establish the asymptotic optimality of base-stock
policies for such systems. Specifically, we prove that as the per-unit lost-sales penalty cost becomes large compared to the per-unit
holding cost, the ratio of the optimal base-stock policy’s cost to the optimal cost converges to one. Our paper provides a theoretical
guarantee of the widely adopted base-stock policies in lost-sales inventory systems with stochastic lead times for the first time.
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1. Introduction

The management of lost-sales inventory systems with positive
lead times, as a fundamental problem in inventory management,
has received tremendous attention from both academia and in-
dustries in the past several decades. Since the optimal policy
for such inventory systems is computationally intractable due to
the notorious curse of dimensionality, investigating the perfor-
mance of simple implementable policy classes becomes quite
important in practice. Among them, the class of base-stock
policies is one of the most widely adopted heuristics in prac-
tice for its simplicity and convenience to implement.

The performance of base-stock policies in lost-sales inventory
systems with constant lead times has been well studied both
numerically and theoretically. For example, Zipkin [22] ob-
served base-stock policies perform reasonably well in a variety
of numerical experiments; Huh et al. [14] proved that the base-
stock policies are asymptotically optimal as lost-sales cost be-
comes large compared with the holding cost, which is common
in many business scenarios.

In recent years, the uncertainty in lead times has become more
and more prevailing especially during and after the COVID-19
pandemic, due to factors such as transportation delays, supply
stockouts, port congestion, and so on. In such instances, the
lead time should be treated as a random variable instead of a
constant. However, the theoretical performance of base-stock
policies for lost-sales inventory systems with stochastic lead
times has not been investigated in the literature.

In this paper, we study the lost-sales inventory systems with
stochastic lead times and establish the first asymptotic optimal-
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ity result for base-stock policies under stochastic lead times.
Specifically, we consider the regime that per-unit holding cost
h is fixed and per-unit lost-sales cost b approaches infinity. The
optimal cost of the problem (denoted by CL,∗(h, b)) and the cost
of the optimal base-stock policy (denoted by infS≥0 CL,S (h, b),
where S is the parameter of the base-stock policy) are asymp-
totically equal, that is

lim
b→+∞

infS≥0 CL,S (h, b)
CL,∗(h, b)

= 1.

The proof follows the roadmap of [14] that relates the costs of
the lost-sales system to newsvendor costs, but the technical de-
tails are different from it. Specifically, to establish the lower
bound on the optimal cost, we first generalize the imitation ar-
gument in [15] to a stochastic lead time version. Then, we adopt
the sample-path analysis from [5] to the problem with stochas-
tic lead times and establish the upper bound of cost under base-
stock policies. The sample-path analysis avoids proving com-
parison results by the existence of the steady-state distribution
as in [14], which seems to not work under stochastic lead times.

We would like to remark that although we generalize the exist-
ing methods to tackle the difficulties caused by stochastic lead
times, we do not claim it as our core technical contribution. Our
main contribution lies in establishing the asymptotic optimality
of the widely adopted base-stock policies in lost-sales inven-
tory systems with stochastic lead times for the first time. We
also present a useful result (Lemma 2) to establish the sublinear
mean residual life property, which may be of independent in-
terest for later research about stochastic lead times. By Lemma
2, we show our result holds under many demand distributions.
Finally, we also discuss the limitation of existing methods to
tackle the other lead time models; see Section 7. We think these
unique challenges caused by stochastic lead times would be an
interesting future direction.
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2. Brief Literature Review

This section briefly reviews the most related literature on inven-
tory systems with stochastic lead times and lost-sales inventory
systems with positive lead times. Please refer to [4] for a broad
review of lost-sales inventory systems and [12] for a detailed
review of the asymptotic analysis of various inventory systems.

For lost-sales inventory systems with deterministic lead times,
Zipkin [22] tested various heuristics and found that base-stock
policies and constant order policies perform reasonably well.
Huh et al. [14] established the asymptotic optimality of base-
stock policies in the constant lead times setting, when the ra-
tio of holding and lost-sales cost approaches infinite. Bijvank
et al. [3] demonstrated the robustness of the asymptotic opti-
mality results in [14]. Bu et al. [5] established the asymptotic
optimality of base-stock policies in three classes of inventory
systems, including the partial backlogged systems with deter-
ministic lead times. There is a series of works studying the con-
stant order policies. Goldberg et al. [11] proved the asymptotic
optimality result in the regime of large lead times and Xin and
Goldberg [19] proved the optimality gap converges to zero ex-
ponentially fast. Later, many policies based on constant-order
policies are proved to be asymptotically optimal for various sys-
tems [7, 2, 1]. Xin [18] considered capped base-stock policies,
which enjoy the advantages of both base-stock policies and con-
stant order policies.

3. Problem Formulation

In this paper, we consider a lost-sales inventory system with
stochastic lead times. The periods are indexed by t = 1, 2, . . . ,
and demand in period t is denoted by Dt. The demand is in-
dependent over time and identically distributed with common
distribution D. We further assume that E[D] > 0 to avoid trivi-
ality. The lead time in period t is Lt ∈ N, i.e., the order placed
in period t will arrive in period t + Lt. We use {L1, L2, . . . } to
denote the lead time process and require that Lt ≤ L,∀t ≥ 1 for
some non-negative upper bound L.

Now we state the sequence of events as follows,

1. At the beginning of period t, the firm reviews its on-
hand inventory level ILt and inventories in the pipeline
(qt−L, qt−L+1, . . . , qt−1), where qi is the order placed at pe-
riod i. The inventory position (i.e., the on-hand inventory
plus all inventory in delivery) is

IPt = ILt +
∑

{i: i+Li≥t}

qi.

We assume the initial inventory states
(q1−L, q1−L+1, . . . , q0) = (0, 0, . . . , 0) and IP1 = 0.

2. The firm decides its order quantity qt ≥ 0 and receives all
orders that should arrive at period t. The total inventory
received is

Qt :=
∑

{i: i+Li=t}

qi.

After the delivery, the on-hand inventory becomes It =

ILt + Qt.

3. Demand is realized as Dt and is satisfied to the maximal
extent using on-hand inventory, and unsatisfied demand is
lost. The leftover inventory causes a holding cost of h per
unit and unsatisfied demand causes a lost-sales cost of b
per unit. Therefore, the total cost incurred at period t is

Ct = h(It − Dt)+ + b(Dt − It)+.

A policy π = (π1, π2, . . . ) is admissible if for each period t ≥ 1,
πt maps the inventory state to qt ≥ 0 and it is measurable. Let
Π be the set of all admissible policies. We use Iπt to denote the
after-delivery on-hand inventory under the admissible policy π,
and the cost in period t is

Cπt = h(Iπt − Dt)+ + b(Dt − Iπt )+.

The firm aims to find an optimal policy in the set Π of admis-
sible policies to minimize the long-run average expected inven-
tory cost as follows

inf
π∈Π

lim sup
T→∞

1
T

T∑
t=1

E[Cπt ].

In this paper, we focus on the performance of the class of base-
stock policies. For S ≥ 0, the base-stock policy with parameter
S (or order-up-to-S policy) decides order quantity qt to raise its
inventory position up to S in each period t ≥ 1, that is

qt = (S − IPt)+.

We use CL,∗(h, b) and CL,S (h, b) to denote the long-run average
cost of the lost-sales system under the optimal cost and order-
up-to-S policy, respectively.

Next, we make some assumptions on the lead time process and
demand distribution throughout this paper.

Assumption 1. Throughout this paper, we require the lead time
process to satisfy the following assumptions.

1. Independence with demand. The lead time process {Lt}t≥1
is independent of demand process {Dt}t≥1.

2. Non-crossing. The lead time process {Lt}t≥1 is non-
crossing, i.e., for any t1 ≤ t2, t1 + Lt1 ≤ t2 + Lt2 w.p.1,

3. Stationary. The process {(Lt, Lt+1, . . . , Lt+L)}t≥1 is a multi-
dimentional stationary process.

Assumption 1.1 is natural because the supply and demand sides
are highly independent parts of supply chains. For Assumption
1.2, generally, the order placed earlier should arrive earlier, re-
sulting in non-crossing lead times. Assumption 1.3 allows the
condition of supply to be stochastically fluctuating, but its dis-
tribution should be stationary.
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We define a new process {λ1, λ2, . . . } based on the lead time
process {L1, L2, . . . }, where λt := max{i : i+Li ≤ t} is the index
of the period that has the latest shipment in or before period t.

By the definition of λt+1, we know

λt+1 = max{i : i + Li ≤ t + 1}
= max{i + 1 : i + Li+1 ≤ t}

= 1 +max{i : i + Li+1 ≤ t}.

Moreover, we know that Lt ≤ L and λt only depends on
(Lt−L, . . . , Lt), which is stationary. It follows that λt+1 = 1 +
max{i : i + Li+1 ≤ t} and 1 + λt have the same distribution.
Therefore, {t−λt}t≥1 follow the same distribution and we define

Dt =

t∑
i=λt

Di, t ≥ 1, (1)

which is identically distributed by the above discussion. De-
note the common distribution and its cumulative distribution
function byD and FD(x), respectively.

We define the mean residual life of a random variable X as

mX(x) =

E[X − x | X > x] , if x < sup{x : FX(x) < 1},
0 , otherwise,

where FX(x) is the cumulative distribution function of X. We
assumeD has sublinear mean residual life as follows.

Assumption 2. mD(x) satisfies that

lim
x→∞

mD(x)
x
= 0.

For convenience, we also write mD(x) = o(x) for short.

The above assumption that D has sublinear mean residual life
is a common assumption used in asymptotic analysis. Note the
random summation form of D (Eq. (1)) causes unique chal-
lenges to the verification of Assumption 2. In section 4.1, we
will discuss how to verify the assumption for D and show that
many demand distributions satisfy it.

4. Discussion on Assumptions

In this section, we discuss assumptions on the lead time process
and demand. In Section 4.1, we show a wide range of demand
distributions satisfying Assumption 2. In Section 4.2, we give
common lead time models that satisfy Assumption 1.

4.1. Demand Distributions
The sublinear mean residual life property (Assumption 2) is sig-
nificant in the asymptotic analysis of inventory systems with
deterministic lead times. For example, see [14, 5, 8, 6]. In this
section, we prove a useful lemma for establishing the property
for the problem with stochastic lead times.

The following lemma proved by [14] is useful in showing that
one-period demand D has sublinear mean residual life.

Lemma 1. If any of the following conditions holds, then D sat-
isfies that mD(x) = o(x).

1. D is bounded.

2. D has an Increasing Failure Rate (IFR) distribution.

3. D has a finite variance and the distribution F of D has a
density f and a failure rate function r(t) of F that satisfies

lim
t→∞

t · r(t) = ∞,

where for any t ≥ 0, r(t) = f (t)/(1 − F(t)).

Note the boundedness and IFR property are preserved under
deterministic summation. Faced with deterministic lead times,
the summation of Eq. (1) is deterministic, and showing the
one-period demand to be bounded or have IFR distribution is
enough to verify Assumption 2 for many distributions.

However, the stochastic lead times cause a complicated random
summation form of D. Both items 2 and 3 in Lemma 1 seem
not preserved under random summation, and item 1 excludes a
wide range of distributions. Therefore, Lemma 1 is not enough
for the systems with stochastic lead times.

Fortunately, we show that if the sublinear mean residual life
property is preserved under deterministic summation, it is also
preserved under independent random summation.

Lemma 2. Suppose that non-negative random variables X1,
X2, . . . , XL satisfy that mX1:k (x) = o(x), for k ∈ [L], where we
define X1:k = X1 + X2 + · · · + Xk. Let N be a random variable
supported on {0, 1, 2, . . . , L} and independent of X1, X2, . . . , XL.
Define Y =

∑N
i=1 Xi, then we have

lim
x→∞

mY (x)
x
= 0.

Applying the above conclusion, we obtain the following corol-
lary, which shows Assumption 2 holds for a large range of com-
mon distributions.

Lemma 3. If the one-period demand D is bounded or has an
IFR distribution, thenD satisfies Assumption 2. Moreover, if D
has one of the following distributions, Assumption 2 holds.

1. Discrete (or continuous) uniform, binomial, and hyperge-
ometric distributions.

2. Geometric, Poisson, negative binomial (with r > 0 and
0 < p < 1), exponential, and Gaussian distributions.

Proof. Take Y = D, N = t − λt + 1, and Xi = Di, i ∈ [L].
If D is bounded or has IFR distribution, for k ∈ [L], X1:k is
also bounded or has IFR distribution, respectively. By Lemma
1, we know that mX1:k (x) = o(x) for k ∈ [L]. Therefore, by
Lemma 2, we know that mD(x) = mY (x) = o(x), i.e.,D satisfies
Assumption 2.

For the distributions in Item 1, it is easy to see that they are
bounded distributions. For the distributions listed in Item 2, we
can verify that they have IFR distributions. Please refer to [14]
for verification.
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Now we give the Proof of Lemma 2.

Proof. By the definition of mY (x), we know

mY (x)
x
=

∫ ∞
x P[Y > u]du

xP[Y > x]
.

Define pk = P[N = k], we have P[Y > u] =
∑L

k=1 pk · P[Y > u |
N = k] and

P[Y > u | N = k] = P

 k∑
i=1

Xi > u

 .
By the above equations, we obtain

mY (x)
x
≤

L∑
k=1

pk
∫ ∞

x P[
∑k

i=1 Xi > u]du

xP[Y > x]
.

It suffices to estimate each term on the above right-hand side. If
pk = 0, the desired result is trivial. Consider each k ∈ [L] and
pk > 0. We have

lim
x→∞

pk
∫ ∞

x P[
∑k

i=1 Xi > u]du

xP[Y > x]

≤ lim
x→∞

pk
∫ ∞

x P[
∑k

i=1 Xi > u]du

x
∑L

k=1 pkP[
∑k

j=1 X j > x]

≤ lim
x→∞

pk
∫ ∞

x P[
∑k

i=1 Xi > u]du

xpkP[
∑k

i=1 Xi > x]
= lim

x→∞

mX1:k (x)
x

= 0,

where we define X1:k = X1 + X2 + · · · + Xk and the last equality
is by that mX1:k (x) = o(x) for any k ∈ [L] and we complete the
proof.

4.2. Lead Time Processes
First, we give some representative lead time models. As we will
see, the conditions of Assumption 1 can be verified by the def-
inition. We will see that base-stock policies are asymptotically
optimal under these lead time models.

Kaplan’s Lead Time Model. {Lt}t≥1 is determined by i.i.d. ran-
dom variables {ρt}t≥1 with common distribution ρ and ρ ≤ L.
Specifically, in period t, all orders that have been outstanding
for at least ρt periods arrive immediately.

Note the order placed earlier stays outside longer, thus it arrives
earlier. We know {Lt}t≥1 is non-crossing. By the definition,
{Lt = n} = {ρt > 0, ρt+1 > 1, . . . , ρt+n−1 > n − 1, ρt+n ≤ n}.
Therefore, the process {(Lt, Lt+1, . . . , Lt+L)}t≥1 is stationary.

Kaplan’s lead time model is the most widely adopted model to
describe stochastic lead times; see [16, 17, 1, 9].

Deterministic Lead Time Model. When all ρt = L for a con-
stant L, we know Lt = L and Kaplan’s model reduces to the
deterministic lead time model.

When Assumption 1 is violated, the asymptotic optimality of
order-up-to-S policies may not hold or its proof requires new

techniques. We discuss some cases and show the limitations of
existing methods. As we will see, these extensions are quite
complicated and we leave it for future directions; see Section 7.

5. Main Results

In this section, we present our main theorem and then provide
a sketched proof. Note in this paper, we consider the system
with lost-sales and we can also define the corresponding back-
log system as an auxiliary system, where unsatisfied demand is
backlogged and all other features are the same. We have the
following main theorem.

Theorem 1. Suppose that Assumptions 1 and 2 hold and there
is an order-up-to-S policy that is optimal for the corresponding
backlog inventory systems, then we have

lim
b→+∞

infS≥0 CL,S (h, b)
CL,∗(h, b)

= 1.

Remark 1. The above theorem requires there is an order-up-to-
S policy that is optimal for the backlog inventory systems. The
requirement does not assume specific lead time models. There-
fore, if one can prove the optimality of order-up-to-S policies in
the backlog system, the corresponding asymptotic optimality in
the lost-sales system holds. It has many possible applications.

For example, [10] and [17] proved that order-up-to-S poli-
cies are optimal for backorder inventory systems under Ka-
plan’s lead time model for discount criterion and average crite-
rion (after slight modification). Based on their conclusions, we
could obtain the following corollary directly, which also covers
deterministic lead times.

Theorem 2. Suppose the lead time process satisfies Kaplan’s
lead time model and Assumptions 2 holds, we have

lim
b→+∞

infS≥0 CL,S (h, b)
CL,∗(h, b)

= 1.

We give a sketched proof of Theorem 1 as follows and detailed
proofs for lemmas are deferred to Section 6.

Proof. When demand isD, per-unit holding cost is fixed h, and
per-unit lost-sales cost is b, we denote the optimal newsvendor
cost as

NV(h, b) := hE[(S b −D)+] + bE[(D− S b)+],

where the optimal solution is given by

S b := inf
{

x : P[D ≤ y] ≥
b

b + h

}
.

The high-level idea of the proof is to bound the costs of the
lost-sales system by newsvendor costs with different per-unit
lost-sales costs. Specifically, we decompose the proof into the
following steps.
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1. In Step I, by Lemma 4 we show

CL,∗(h, b) ≥ NV
(
h, b/(L + 1)

)
.

2. In Step II, by Lemma 5 we prove

CL,S b+hL (h, b) ≤ NV
(
h, b + hL

)
.

3. In Step III, by Lemma 6 we demonstrate

lim
b→∞

NV
(
h, b + hL

)
NV
(
h, b/(L + 1)

) = 1.

By the above three steps, we have

1 ≤ lim
b→∞

infS≥0 CL,S (h, b)
CL,∗(h, b)

≤ lim
b→∞

NV
(
h, b + hL

)
NV
(
h, b/(L + 1)

) = 1.

Thus, we complete the proof of Theorem 1.

6. Proof of Theorem 1

In this section, we present the detailed proof of Theorem 1 in
three steps as introduced in Section 5.

6.1. Step I: Bound the Optimal Cost from Below
In the following lemma, we show that the optimal cost of the
lost-sales system with per-unit lost-sales cost of b is bounded
from below by the newsvendor cost with per-unit lost-sales cost
of b/(L + 1).

Lemma 4. Suppose that Assumption 1 holds and there is
an order-up-to-S policy that is optimal for the corresponding
backlog inventory systems. We have

CL,∗(h, b) ≥ NV
(
h, b/(L + 1)

)
.

The proof idea of this lemma is from [15] studying problems
with constant lead times. We generalize its idea to the stochas-
tic lead times setting directly and present the rigorous proof as
follows mainly for completeness.

Remark 2. When lead times are deterministic, [5] and [6]
proposed a sample-path approach to establish a similar lower
bound. The method is simple and powerful in many problems,
but it requires the independence betweenDλt and after-delivery
on-hand inventory in period λt to apply Jensen’s inequality,
which seems hard to satisfy due to the stochastic lead times.
Fortunately, the imitation-based method in this proof still works
under stochastic lead times.

Proof. The main idea of the proof is to construct a policy πB for
the backorder system to imitate the behavior of the lost-sales
system under its optimal policy. Without loss of generality, we
assume there exists an optimal policy for the lost-sales system

(Otherwise, an analogous argument works for near-optimal pol-
icy π̂ such that CL,π̂(h, b) ≤ CL,∗(h, b) + ϵ for any ϵ > 0).

Let πL,∗ be the optimal policy. Under the policy πL,∗, we de-
note the order quantity, lost-sales quantity, and after-delivery
on-hand inventory in period t by qLt , lLt , and ILt , respectively.
Similarly, we define qBt , IBt for the backorder system under the
policy πB to be constructed.

Now, we define the policy πB as follows. In period t, the order
quantity given by πB is

qBt = lLt−1 + qLt .

We also require that the policy satisfies the backlogged demand
in period t using the order placed in period t + 1. Note that un-
der such a service mechanism, there may be on-hand inventory
and backlogged demand simultaneously. Let CB,∗(h, b) be the
optimal cost of the backlog system, and we know

CB,π
B

(h, b) ≥ CB,∗(h, b). (2)

Next, we compare the cost CB,π
B

(h, b) with the optimal cost of
the lost-sales system.

First, we consider the period t = 1. Both systems start from
the same initial state. The unsatisfied demand lL1 of the lost-
sales system is also the backlogged demand in the backorder
system. Then, in period t = 2, the backorder system orders
qB,π

B

2 = lL1 + qL2 . The quantity qL2 is just the order quantity of
the lost-sales system and the additional order quantity lL1 will be
used to satisfy the demand backlogged in period 1. By a simple
induction, we can see that under the policy πB,

1. The on-hand inventories IBt and ILt of the two systems are
equal.

2. The backlogged demand (Dt − IBt )+ in period t will cause
backorder costs for Lt + 1 periods.

Therefore, we know the two systems incur the same holding
cost. Moreover, the backlogged demand will be satisfied after
at most L + 1 periods by Assumption 1. We have

CB,π
B

(h, b)

≤ lim sup
T→∞

1
T

T∑
t=1

E
[
h(IBt − Dt)+ + b · (Lt + 1) · (Dt − IBt )+

]
≤ lim sup

T→∞

1
T

T∑
t=1

E
[
h(IBt − Dt)+ + b · (L + 1) · (Dt − IBt )+

]
= lim sup

T→∞

1
T

T∑
t=1

E
[
h(ILt − Dt)+ + b · (L + 1) · (Dt − ILt )+

]
= CL,∗(h, b(L + 1)),

Combine the above inequality with Eq. (2), we know

CL,∗(h, b(L + 1)) ≥ CB,∗(h, b). (3)

Since the above inequality holds for any non-negative h and b,
replacing b with b/(L + 1) gives that

CL,∗(h, b) ≥ CB,∗(h, b/(L + 1).
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Next, we show CB,∗(h, b) ≥ NV(h, b) for any b.

Consider the backorder system with backlog costs of b per unit.
By the assumption that base-stock policies are optimal in the
backlogging system, the optimal cost can be attained by some
order-up-to-S policy.

Recall λt ≜ max {i : i + Li ≤ t}. λt denotes the index of the
period that has the latest shipment in or before period t. Hence,
the inventory position S ( under the order-up-to-S policy) will
all arrive in or before t, and inventory level It equals S minus
all demand during the period from λt to t. Therefore, we know

It = S −
t−1∑
i=λt

Di.

Therefore, for t ≥ L̄ + 1, we know the cost in period t is

E[h(It − Dt)+] + E[b(Dt − It)+]

= E[h(S −
t−1∑
i=λt

Di − Dt)+] + E[b(Dt − S +
t−1∑
i=λt

Di)+]

= E[h(S −Dt)+] + E[b(Dt − S )+] ≥ NV(h, b).

By the definition of long-run average cost, we know that

CB,∗(h, b) ≥ NV(h, b).

For the above inequality, replacing b with b/(L + 1) and com-
bining it with Eq. (3), we complete the proof.

6.2. Step II: Bound the Cost of Base Stock Policies from Above

In the following lemma, we prove that under the order-up-to-S
policy, the cost of the lost-sales system with per-unit lost-sales
cost of b is bounded from above by a newsvendor cost with a
per-unit lost-sales cost of b + hL.

Lemma 5. Under Assumption 1, we have

CL,S b+hL (h, b) ≤ NV
(
h, b + hL

)
.

Proof. Consider any order-up-to level S . Under the policy, let
It, and lt be defined similarly as Lemma 4. We also denote qt

the order in period t. Note that all quantities in this proof are
defined under the order-up-to-S policy and we omit the super-
scribe of S for simplicity.

By the definition of order-up-to-S policy, we know qi = Di−1 −

li−1. Moreover, the on-hand inventory It plus the not delivered
quantity

∑t
i=λt+1 qi equals S . It follows that

It = S −
t∑

i=λt+1

qi = S −
t∑

i=λt+1

Di−1 +

t∑
i=λt+1

li−1. (4)

Therefore, by the above equation, we know

hE[(It − Dt)+] = hE[(S −
t∑

i=λt+1

Di−1 +

t∑
i=λt+1

li−1 − Dt)+]

≤ hE[(S −
t∑

i=λt+1

Di−1 − Dt)+] + hE[
t∑

i=λt+1

li−1]

≤ hE[(S −Dt)+] + h
t∑

i=t−L+1

E[li−1], (5)

where the first inequality is by (a+b)+ ≤ a++b, provided b ≥ 0
and the last inequality is by the definition ofDt.

On the other hand, by Eq. (4), we know

It = S −
t∑

i=λt+1

Di−1 +

t∑
i=λt+1

li−1 ≥ S −
t∑

i=λt+1

Di−1.

It follows that

E[lt] = E[(Dt−It)+] ≤ E[(Dt−S +
t∑

i=λt+1

Di−1)+] ≤ E[(Dt−S )+].

(6)
Therefore, by Eq. (5) and Eq. (6), we have

lim sup
T→∞

1
T

T∑
t=1

[
hE[(It − Dt)+] + bE[(Dt − It)+]

]
≤ lim sup

T→∞

1
T

T∑
t=1

hE [(S −Dt)+
]
+ h

t∑
i=t−L+1

E[li−1] + bE[lt]


≤ hE[(S −D)+] + (b + hL)E[(D− S )+],

where in the last inequality we use that {Dt, t ≥ 1} have the
common distributionD. Thus we proved that for any S ≥ 0

CL,S (h, b) ≤ hE[(S −D)+] + (b + hL)E[(D− S )+].

Taking S = S b+hL, we complete the proof.

6.3. Step III: Establish the Robustness of the Optimal Newsven-
dor Cost

The following lemma shows that the optimal newsvendor cost
is robust with respect to the lost-sales cost.

Lemma 6. Suppose that Assumptions 1 and 2 hold, then we
have

lim
b→∞

NV
(
h, b + hL

)
NV
(
h, b/(L + 1)

) = 1.

Proof. First, we consider the case thatD is bounded with upper
bound D̄ := sup{x : FD(x) < 1}, where FD(x) is the cumula-
tive distribution function of D. As b approaches infinity, the
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newsvendor solution will tend to D̄ and the optimal newsven-
dor cost E[h(S b−D)++b(D−S b)+] will approach h(D̄−E[D]).
Therefore, we know

lim
b→∞

NV
(
h, b + hL

)
NV
(
h, b/(L + 1)

) = limb→∞ NV
(
h, b + hL

)
limb→∞ NV

(
h, b/(L + 1)

)
=

h(D̄ − E[D])
h(D̄ − E[D])

= 1.

Next, we assume that D is unbounded. By Assumption 2, we
know mD(x) = o(x).

Theorem 1 in [6] states that if D is unbounded and mD(x) =
o(x), then we have

lim
b→∞

NV(h, b)
F−1
D

( b
b+1 )
= h. (7)

Therefore, define νb = (b + hL)/b ≥ 1 and by the definition of
S b+hL, we have

hE[(S b+hL −D)+] + (b + hL)E[(D− S b+hL)+]

≤ hE[(S b −D)+] + (b + hL)E[(D− S b)+]

= νb
{
ν−1

b hE[(S b −D)+] + bE[(D− S b)+]
}

≤ νbNV(h, b),

and

lim sup
b→∞

NV
(
h, b + hL

)
F−1
D

( b
b+1 )

≤ lim
b→∞
νb · lim

b→∞

NV(h, b)
F−1
D

( b
b+1 )
= h,

where the equality is by Eq. (7).

On the other hand, we know

lim
b→∞

NV
(
h, b/(L + 1)

)
F−1
D

( b
b+1 )

= lim
b→∞

1

L + 1
·

NV
(
h(L + 1), b

)
F−1
D

( b
b+1 )

=
1

L + 1
· lim

b→∞

NV
(
h(L + 1), b

)
F−1
D

( b
b+1 )

= h.

Combining the above two conclusions, we obtain

lim sup
b→∞

NV
(
h, b + hL

)
NV
(
h, b/(L + 1)

) ≤ lim sup
b→∞

NV
(
h, b + hL

)
hF−1
D

( b
b+1 )

≤ 1.

Meanwhile, we know

lim inf
b→∞

NV
(
h, b + hL

)
NV
(
h, b/(L + 1)

) ≥ 1,

since b + hL ≥ b/(L + 1). By the above two inequality, we
complete the proof.

7. Concluding Remarks

The inventory control of lost-sales inventory systems with
stochastic lead times is notoriously hard due to the well-known
curse of dimensionality. Due to their simplicity and good per-
formance, base-stock policies are widely adopted in practice.
In this paper, we prove the asymptotic optimality of base-stock
policies in the lost-sales inventory systems, generalizing the ex-
isting result to the setting of stochastic lead times. The results
of this paper justify the wide application of base-stock policies
from a theoretical perspective and shed light on future research
directions in extending the existing lost-sales inventory man-
agement learning algorithms [13, 21] to address more complex
scenarios involving stochastic lead times.

For future directions, it would also be interesting to consider
the problem with crossing stochastic lead times or Markov-
modulated lead times, which seems to call for new techniques.

Lead time models with crossover. Note the asymptotic op-
timality of base-stock policies is due to the similar behavior
of lost-sales and backlog systems in the regime of large lost-
sales costs (both systems tend to avoid stock-out). Therefore,
the optimal policy for the backlog system is also asymptotically
optimal for the lost-sales system. All the existing methods are
based on the above intuition.

However, the base-stock policies may not be optimal for the
backlog systems with lead time crossover, e.g., i.i.d. lead times;
see [20]. Therefore, we first need to study whether base-stock
policies are asymptotically optimal for backlog systems, then
the relation between the lost-sales and backlog systems.

Lead time models under Markov environment. In this paper,
we prove the asymptotic optimality of constant base-stock poli-
cies under lead time models such that constant base-stock poli-
cies are optimal in backlog systems like Kaplan’s model. There
are also Markov-modulated lead time processes; see [17]. Un-
der these models, it is proved that a state-dependent base-stock
policy is optimal for backlog systems. Therefore, one may ex-
pect the state-dependent base-stock policy would be asymptot-
ically optimal for the corresponding lost-sales systems.

To establish the asymptotic optimality of state-dependent base-
stock policy, we need to solve many new technical challenges.
For example, one may need to generalize the existing compar-
ison results to the Markov-modulated environment, relate the
costs to a closed form (may not have a newsvendor cost form),
and study the limiting behavior of the closed form to obtain the
final conclusion.
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