This paper will be published in the journal Tsinghua Science and Technology

A Heuristic for Two-Sage No-Wait Hybrid Flowshop Scheduling

with a Single Machine in Either Sage
L1U Zhixin"(X:5357), L1 Jianguo™ (4g[H) |, XIE Jinxing™ (i 4&42) |
DONG Jiefang® (FEZJ7)
! Department of Mathematical Sciences, Tsinghua Univer sity, Beijing 100084, China
2Wuhan Iron & Steel Group Company, Wuhan 430080, China

Abstract: This paper studies the hybrid flow-shop scheduling problem with no-wait restriction. The
production process consists of two machine centers, one has a single machine and the other has more
than one parallel machines. A greedy heuristic named Least Deviation (LD) algorithm is designed
and its worst case performance is anayzed. Computational results are also given to show the
algorithm'’s average performance compared with some other algorithms. LD agorithm outperforms
the others in most practical cases discussed here, and it is of low computational complexity and is
easy to carry out, thusit is of favorable application value.

Key Words: hybrid flowshop scheduling; no wait; heuristic; worst case analysis

Received: 2002-03-11; Revised: 2002-4-26
Supported by the National Natural Science Foundation of China (No. 69904007)
"To whom correspondence should be addressed. Tel: 86-10-6278 7812 E-mail: jxie@math.tsinghua.edu.cn

This paper will be published in the journal Tsinghua Science and Technology

I ntroduction

Belonging to the class of NP-hard problems, the no-wait hybrid flowshop scheduling is among
the most well studied combinational optimization problems. The no-wait restriction, as described in
[1], occurs when the operations of ajob have to be processed from start to end without interruptions
between machines. This means, when necessary, the start of a job on a given machine is delayed in
order that the operation’s completion coincides with the start on the next operation on the subsequent
machine. There are several industries where the no-wait flowshop problem applies. Examples
include the metal, plastic, and chemical industries. For instance, in the case of steel production, the
heated metal must continuously go through a sequence of operations before it is cooled in order to
prevent defects in the composition of the material.

The no-wait hybrid flowshop scheduling problem generally can be described as follows.
Given a list of machine centers, each having a fixed number of parallel machines, there are n jobs

{P |1<i < n} to be processed with the same fixed processing order on the machine centers, and each

process must be carried out on at most one machine in every center, without any interruption either
on or between machines during the process. The objective is to minimize the makespan of all the
jobs, i.e. the time extent from the beginning time of the first job to the finished time of the last job
being processed. The problem has attracted the attention of many researchers. A detailed survey of
the application and research on the problem is given by Hall and Sriskandargjah [2]. Readers can
also refer to [1], [3-9] for some new resultsin thisfield.

This paper evaluates the performance of some heuristics on a kind of relatively simple cases
of the hybrid flowshop scheduling. Only two machine centers are taken into consideration and only a
single machine isin one of the two centers, while it is still belonging to the NP-hard class, see [10]
for details. During the heuristics we can take either center as the first one, which does not affect the
makespan of any solution got by the heuristics. So to be convenient, we only discuss the case that
one machine is aways in the first center. Thus the problem can be denote as

F,(m =1,m, =m>1)|no-wait| C__ " (problem F for shot), where F, denotes that the type

of the problem is two-stage flowshop, no-wait describes the restriction, and C__ shows the

optimal objectiveisto minimize the makespan.
1 Heuristic Design

For hybrid flowshop problem with no-wait restriction, among all the heuristics discussed here,
the beginning time of any job on the first center should be restricted by the time point when thereis
at least one machine in the second center begins to be idle. Thisisin order to guarantee the no-wait
restriction. Thelist scheduling algorithm (algorithm L for shot), originally designed as a heuristic for
paralel machine scheduling in [11], is of broad applications in scheduling, and has been applied to
hybrid flowshop scheduling in [12,13]. As for problem F, agorithm L is exactly the application of

This paper will be published in the journal Tsinghua Science and Technology

the contrary deduction to get starting time point of every job for the machine in the first center for
any given list of jobs.

In [13] another heuristic was also analyzed (named algorithm D here), which first sorts the
jobs in non-increasing order of the second center processing time, and then uses agorithm L to
arrange them to process. Besides, one can apply Johnson’s Rule to arrange al the jobs during the
first step and then use agorithm L to achieve the makespan, and we named this algorithm J.
Johnson’'s Rule was designed in [14] for the classical two-stage flowshop problem without no-wait
restriction, and is the exact algorithm for that problem.

All the above three heuristics consist of two steps, sorting and then determining the starting
time of each job. However, the Least Deviation (LD for short) algorithm put forward in this paper is
of different method. Algorithm LD sorts the jobs and determines the starting time simultaneoudly, i.e.
the sorting process is dynamic. Let the machine in the first center be machine a and the m parallel
machinesin the second center be {b;,b,,---,b,} , then algorithm LD can be described as follows.

Algorithm L D. When the algorithm starts to run, all the machines in both machine centers are
considered to be idle. For any time point when machine a begins to be idle, search the machine to be

firstly idle anong machines {b, |[1< j <m} (any idle machine is naturally the first one; if there

are more than one such kind of machines, randomly choose one). Let the processing time left to
process the job on that machine be t. Among all the jobs to be processed, choose the job which has
the closest first-center processing timeto t (break ties arbitrarily). Suppose that the job chosen is

job i" and the processing time of job i" on machine a is t,. If t<t,, job i starts to process on
machine a immediately; otherwise we have t >, thusjob i" needs to start to process on machine a
after t—1, waiting time.

Let p; and p, (i =1...,n) bethe processing times of job i in the first and second machine
centers respectively. Then, the algorithm LD can be described in an exact way as below.

Sep 0. Se¢ MA=0and MB; =0 (j=1...m); Set J, =L =K, =0(i=1..,n),
n"=1and SP=0.

Step 1. Set MB; = max(0,MB; ~MA) (j =1..,m)and MA=0.

Step2.Set j =argmin{MB, | j =1,...,m}, and st t = MB...

Step 3. Set i =argmin{| p, —t||J, =0,i =1...,n}, and set t, = p,. and J. =1. Set
L.=i", K.=j.

Step 4. Set MA=max(t,t;) and MB]_. =MA+p,. .

Sep6.Set N =n +1.1f " =n,goto Step 7; Otherwiseset SP = SP + MA and go to

This paper will be published in the journal Tsinghua Science and Technology

Step 1.
Siep 7. Set P = P+ max{MB; | j =1,...,m} and stop.

In the algorithm LD presented above, L (i =1...,n) represents for the ordered processing

list of al the jobs, K,(i =1...,n) represents for the corresponding machine for the jobs to be

processed on the second center, and SP isthe makespan.

For problem F, the computational complexity of algorithm L is O(mn), and that of both
agorithm D and algorithm Jis O(mnlgn).

Theorem 1 For problem F with n jobs, the computational complexity of agorithm LD is
O(mn?).

Proof There are n idle beginning time points for machine a. For each one of them, we
should determine the machine in the second center, which need O(m) searching. After that, the job
of the least deviation processing time can be found in O(n) time. So the total computational
complexity is O(mn?).

Besides this, we can sort al the jobs according to their processing times in the first center,
either in increasing order or decreasing order. Then the jobs can be searched by binary-search
methods. Thus the average computational time can be reduced. Furthermore, according to advanced
sorting theory, one can store the jobs in a more complicated data structure, such as binary search tree,

and thus one can reduce the computational complexity of algorithm LD to O(mnlign) .

2 Worst Case Performance Analysis

Asfor scheduling problem, the worst case performance is among the most useful performance
index of a heuristic, which describes the performance of a heuristic in the worst case. For a heuristic
H, the worst case performance is the ratio of the makespan obtained by H and the optimal solution
for the worst case instance, which is called tight if there is at least one instance to make the ratio
hold.

For problem F, the worst case ratio of algorithm L is 3—1/m, and that of algorithm D is 2.
Both of them are tight 3 Since agorithm Jis a specia case of agorithm L, its worst case ratio is
obviously not larger than 3—1/m.

Theorem 2 For problem F, the worst case ratio of algorithm LD is 3—1/m, anditistightin
a general sense where some jobs can be processed only in one center.

Proof Since agorithm LD is a specia case of agorithm L, the conclusion that its worst case
ratio is not larger than 3—1/m can be directly drawn from the result for agorithm L, as was
proved in [13].

For problem F in general sense, some jobs can be processed only in one center. An instance of

This paper will be published in the journal Tsinghua Science and Technology

ratio 3—1/m isgiven asbelow. Thejob set is
J={J,(<i<mN-(2m-1), Jb(i)|1si sm-1J (Hsism-1J.},
and the processing times in both centers are
pl3.0)]=[e.¢] . 1<i < mN - (2m-D),
p[3, ()] =[e,1].1<i <m-1,
p[3.()]=[e.(m-DL] 1<i<m-1,
plJ]=[e.mL].
Here ¢ means the job need not to be processed on that center, &<<L, and N is an integer

big enoughtomake N&=L.

M |£| £| |£ g| v [l el e

My, (ML mL
Mz, | (m-1)L |

M2 | .('r‘rrl)L |

Mam1 | (ML |

Mo N e —

Fig. 1 Solution with the same makespan asalgorithm LD, f =(3m-1)L —(2m-2)¢

My (e - - - [

Moy L (Mm1)L |

Mo, | L | (m1L |

M3 m2 | L | (m1L |

M3 m1 | L | (m1L |
Mz, | mL |

Fig. 2 Optimal solution, f~ =mL+me
From Fig. 1 and Fig. 2, we get,
F_@Bm-)L-(2m-2)¢

f mL + me
_(B-1/m)-(2-2/m)e/L

1+¢/L

Thus, lim f* —3—£.

£ Lﬂof m

If al the jobs need be processed on both centers, the instance with performance ratio of

This paper will be published in the journal Tsinghua Science and Technology

3-2/m can be shown as below, while whether there exists one with ratio 3—1/m isstill open.
Thejob setis

J={J,()|1<i<smN-(Bm-5),J,()[1si<2m-4,J (i) |1<si<m-2J,},
and the processing time in both centersis,

plJ, ()] =[€,€]l1<i<mN-(Bm-5),

plJ,()] =[&,L]1<i<2m-4,

plJ.M)] =[&,(m-2)L]1<i<m-2,

p[J,] =[&,mL].

£ << L,and Nisaninteger big enoughto make N&=L.

My |g . |‘8 g| .

Ma, e e| (m2)L mL
Mz, | (m2)L |

Mz m2 | (m2)L |

Mz m1 | L | | L |
o .

Fig. 3 Solution with the same makespan asalgorithm LD, f =(3m-2)L —(3m-6)¢&

R C CE A Co R o R
L

My, L (m2)L |

M, | L | L | (m2)L |

Mz,m2 | L | L | (m2)L |

Mz m1 | £ £|

M2,m mL |

Fig. 4 Optimal solution, f = =mL +me
From Fig. 3 and Fig. 4,
F_@Bm-2)L-Bm-6)¢

f mL + me
:(3—2/m)—(3—6/m)£/L
1+¢/L
So, lim f* =3—£.
g/Lﬂof m

This paper will be published in the journal Tsinghua Science and Technology

3 Aver age Case Performance Analysis

We evaluated the performance of al the four heuristic for problem F by a large number of
randomly generated instances. Three cases with m=2510 were studied, and the processing
times of the jobs were generated from uniform and normal distributions respectively.

Let p;, and P, (i=212..n) denotethe processing time on both the centers for the jobs.

For normal distribution, we designed the following instance sets:

l;:both p; and p, arefrom N(30,25),

I: both p; and p, arefrom N(30,100),

Iz p; isfrom N(30,25) and p, isfrom N(30m,25m?),

li p; isfrom N(30,100) and p, isfrom N(30m100m?).

For uniform distribution, we designed the following instance sets:

ls: 0< py, py <15,

le, 0<py, Py <30,

Iz 0<p, =15,0< p, <15m,

ls: 0<p, <30, 0<p, <30m.

Let nt denote problems tested in each instance (Here we have taken nt =100). Let frH

be the makespan, i.e. the C_,, obtained by agorithm H (H=L, D, J, LD) for 1, (r =12,---,8)

max ?
instances, and let fr0 be a lower bound of the makespan of |, (r =12,---,8) of the optima
solution.

Thelower bound f,° of problem F is estimated as

o =mac[S, +ming, | (£ 3p, +mir plj}

H

1

f o nt
Let €' =———x100 and E ==> €.

fro nt r=1
Thus, ErH (H=L, D, J, LD) indicates the relative performance of algorithmsL, D, Jand LD

with respect to the lower bound. The heuristic with the least E" has the closest solution to the

optimal one, and has the best average performance compared with the others.

This paper will be published in the journal Tsinghua Science and Technology

Table 1 Aver age performance evaluation of the heuristics

[n m L D J LD O
11 30 2 828 1404 309 654 J
12 30 2 715 1360 250 684 J
13 30 2 2201 2713 1752 1543 LD
14 30 2 2172 26.65 1748 1610 LD
15 30 2 1746 2522 850 1181 J
16 30 2 1786 26.67 840 1264 J
17 30 2 3158 4111 2125 2312 J
18 30 2 3073 4112 2063 1955 LD
1 300 2 589 1101 198 6.17 J
2 300 2 6.18 1074 203 6.04 J
I3 300 2 2152 2595 18.07 1424 LD
4 300 2 2211 2631 1870 1525 LD
I5 300 2 1236 1776 587 842 J
16 300 2 1196 2054 701 910 J
I7 300 2 2952 3862 20.61 1880 LD
18 300 2 2878 3826 2060 17.63 LD
11 60 5 481 945 225 503 J
12 60 5 443 892 242 467 J
13 60 5 3430 4231 3338 2832 LD
14 60 5 3416 4327 3012 2755 LD
15 60 5 772 1361 19 648 J
16 60 5 759 1460 216 805 J
17 60 5 5139 6419 4033 4118 LD
18 60 5 5011 6320 37.79 4086 J
1 600 5 368 683 173 35 J
[2 600 5 321 647 179 313

I3 600 S5 3015 3711 2859 2407 LD
4 600 5 2917 36.04 29.19 2355 LD
I5 600 5 490 956 104 515 J
6 600 5 513 980 133 455 J
I7 600 S5 3767 5135 2956 31.04 J
I8 600 S5 40.71 5239 3114 3150 J
1 110 10 316 585 204 295 J
2 110 10 302 576 18 263 J

I3 110 10 4262 5407 41.04 3786 LD
4 110 10 3998 5196 4038 3742 LD
5 110 10 378 771 148 3.77

6 110 10 452 803 134 402 J
[7 110 10 6195 7566 55.04 5203 LD
I8 110 10 62.60 78.09 56.37 5447 LD
1 1100 10 229 432 134 225 J
[2 1100 10 215 426 128 221 J
I3 1100 10 35.03 44.05 3539 3045 LD
[4 1100 10 3398 4340 3384 28.79 LD

This paper will be published in the journal Tsinghua Science and Technology

5 1100 10 275 518 112 258 J
6 1100 10 309 557 101 266 J
[7 1100 10 4819 59.92 4219 3912 LD
18 1100 10 4795 6049 4420 4230 LD

The results are shown in Table 1, where m and n denote the number of machines in the
second center and the number of the jobs, respectively. The last column lists the best heuristic among
the four.

As shown in Table 1, compared with the ones with processing time of uniform distribution,
the ones with processing time of normal distribution can be achieved closer makespan to the lower
bound by the four heuristics discussed in this paper.

Among the four algorithms, obviously algorithms Jand LD are relatively better than the other
two. While for algorithm L and D, algorithm L is a little better. This result indicates that sorting the
jobs by the processing time on the second center cannot improve the average performance even
though it improves the worst case performance.

Furthermore, one can find a phenomenon for the performance of algorithms Jand LD. For the
cases the processing times in both centers are from the same distribution, i.e. 14, I5, I, I, agorithm J
is better. While for the case the processing time correlates with the number of the machines in each
center, algorithm LD is the better one. One should pay attention to that, in the real world, generally
the processing times of the jobs are correlated to the number of machines where those jobs to be
processed; Otherwise there maybe too many idle time on some machines in the second center.

4 Conclusions

For problem F,(m, =1, m, =m>1) |no-wait|C,,, , we put forward the Least Deviation

max *
algorithm, analyzed its worst case performance, and then showed its efficiency by numerica
experiments. The Least Deviation algorithm is of low computational complexity and is easy to be
implemented, thusit is vauable to be used in real world applications.

Finally, we should point out that the generalization of this algorithm is straightforward to ded
with the two-stage no-wait hybrid flow-shop scheduling problem with more than one parallel
machines in both stages. That's to say, following the similar ideas and steps of the Least Deviation
agorithm for the problem F,(m, =1, m, =m>1)|no-wait|C we can design the Least

max '’
Deviation algorithm for the generalized problem F,(m, =1,m, >1) [no-wait|C__, . In fact, we
have also conducted numerical experiments for this generalized problem, and the results show that,

compared with most of the other algorithms, the Least Deviation algorithm is very competitive under
most of the cases we tested for the problem.

This paper will be published in the journal Tsinghua Science and Technology

References

[1] Aldowaisan T, Allahverdi A. Total flowtime in no-wait flowshops with separated setup times.
Computers and Operations Research, 1998, 25: 757-765.

[2] HAl N G and Sriskandargjah C. A survey of machine scheduling problems with blocking and
no-wait in process. Operations Research, 1996, 44(3): 510-525.

[3] Agnetis A. No-wait Flow shop scheduling with large lot sizes. Annals of Operations Research,
1997, 70: 415-438.

[4] Bianco L, Dell’Olmo P, Giordani S. Flow shop no-wait scheduling with sequence dependent
setup times release dates. INFOR, 1999, 37: 3-19.

[5] Ragendran C. Formulation and heuristic for scheduling in a Kanban flowshop to minimize the
sum of weighted flowing, weighted tardiness and weighted earliness of containers. International
Journal of Production Research, 1999, 37(5): 1137-1158.

[6] Kumar S, Bagchi T P, Sriskandargjah C. Lot streaming and scheduling heuristic for m-machine
no-wait flowshops. Computer and Industrial Engineering, 2000, 38(1): 148-171.

[7] Abadi | N K, Hal N G Sriskandargiah C. Minimizing cycle time in a blocking flowshop.
Operations Research, 2000, 48(1): 177-180.

[8] Sawik T. Mixed integer programming for scheduling flexible flow lines with limited
intermediate buffers. Mathematical and Computer Modelling, 2000, 31: 39-52.

[9] Aldowaisan T. A new heuristic and dominance relations for no-wait flowshops with setups.
Computers and Operations Research, 2001, 28: 563-584.

[10]Gaey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman San Francisco, 1979.

[11] Graham R L. Bounds for certain multiprocessing anomalies. The Bell System Technical Journal,
1966, 45: 1563-1581.

[12] Sriskandargjah C, Sethi S P. Scheduling algorithms for flexible flowshops: Worst and average
case performance. European Journal of Operational Research, 1989, 43: 143-160.

[13] Sriskandargjah C. Performance of scheduling algorithms for no-wait flowshops with parallel
machines. European Journal of Operational Research, 1993, 70: 365-378.

[14]Johnson S M. Optimal two- and three-stage production schedules with setup times included.
Naval Research Logistics Quarterly, 1954, 1. 61-68.

10

