
This paper will be published in the journal Tsinghua Science and Technology 

 1

A Heuristic for Two-Stage No-Wait Hybrid Flowshop Scheduling  

with a Single Machine in Either Stage 

LIU Zhixin1(刘志新), LI Jianguo1
（李建国）, XIE Jinxing1,*

（谢金星）, 

DONG Jiefang2
（董杰方）

 

1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China 

2 Wuhan Iron & Steel Group Company, Wuhan 430080, China 

Abstract: This paper studies the hybrid flow-shop scheduling problem with no-wait restriction. The 

production process consists of two machine centers, one has a single machine and the other has more 

than one parallel machines. A greedy heuristic named Least Deviation (LD) algorithm is designed 

and its worst case performance is analyzed. Computational results are also given to show the 

algorithm’s average performance compared with some other algorithms. LD algorithm outperforms 

the others in most practical cases discussed here, and it is of low computational complexity and is 

easy to carry out，thus it is of favorable application value. 
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Introduction 

Belonging to the class of NP-hard problems, the no-wait hybrid flowshop scheduling is among 

the most well studied combinational optimization problems. The no-wait restriction, as described in 

[1], occurs when the operations of a job have to be processed from start to end without interruptions 

between machines. This means, when necessary, the start of a job on a given machine is delayed in 

order that the operation’s completion coincides with the start on the next operation on the subsequent 

machine. There are several industries where the no-wait flowshop problem applies. Examples 

include the metal, plastic, and chemical industries. For instance, in the case of steel production, the 

heated metal must continuously go through a sequence of operations before it is cooled in order to 

prevent defects in the composition of the material. 

The no-wait hybrid flowshop scheduling problem generally can be described as follows. 

Given a list of machine centers, each having a fixed number of parallel machines, there are n jobs 

}1|{ niPi ≤≤ to be processed with the same fixed processing order on the machine centers, and each 

process must be carried out on at most one machine in every center, without any interruption either 

on or between machines during the process. The objective is to minimize the makespan of all the 

jobs, i.e. the time extent from the beginning time of the first job to the finished time of the last job 

being processed. The problem has attracted the attention of many researchers. A detailed survey of 

the application and research on the problem is given by Hall and Sriskandarajah [2]. Readers can 

also refer to [1], [3-9] for some new results in this field. 

This paper evaluates the performance of some heuristics on a kind of relatively simple cases 

of the hybrid flowshop scheduling. Only two machine centers are taken into consideration and only a 

single machine is in one of the two centers, while it is still belonging to the NP-hard class, see [10] 

for details. During the heuristics we can take either center as the first one, which does not affect the 

makespan of any solution got by the heuristics. So to be convenient, we only discuss the case that 

one machine is always in the first center. Thus the problem can be denote as 

|)1,1( 212 >== mmmF no-wait max| C [10] (problem F for shot), where 2F  denotes that the type 

of the problem is two-stage flowshop, no-wait describes the restriction, and maxC  shows the 

optimal objective is to minimize the makespan. 

1    Heuristic Design 

For hybrid flowshop problem with no-wait restriction, among all the heuristics discussed here, 

the beginning time of any job on the first center should be restricted by the time point when there is 

at least one machine in the second center begins to be idle. This is in order to guarantee the no-wait 

restriction. The list scheduling algorithm (algorithm L for shot), originally designed as a heuristic for 

parallel machine scheduling in [11], is of broad applications in scheduling, and has been applied to 

hybrid flowshop scheduling in [12,13]. As for problem F, algorithm L is exactly the application of 



This paper will be published in the journal Tsinghua Science and Technology 

 3

the contrary deduction to get starting time point of every job for the machine in the first center for 

any given list of jobs. 

In [13] another heuristic was also analyzed (named algorithm D here), which first sorts the 

jobs in non-increasing order of the second center processing time, and then uses algorithm L to 

arrange them to process. Besides, one can apply Johnson’s Rule to arrange all the jobs during the 

first step and then use algorithm L to achieve the makespan, and we named this algorithm J. 

Johnson’s Rule was designed in [14] for the classical two-stage flowshop problem without no-wait 

restriction, and is the exact algorithm for that problem. 

All the above three heuristics consist of two steps, sorting and then determining the starting 

time of each job. However, the Least Deviation (LD for short) algorithm put forward in this paper is 

of different method. Algorithm LD sorts the jobs and determines the starting time simultaneously, i.e. 

the sorting process is dynamic. Let the machine in the first center be machine a and the m parallel 

machines in the second center be },,,{ 21 mbbb , then algorithm LD can be described as follows. 

Algorithm LD. When the algorithm starts to run, all the machines in both machine centers are 

considered to be idle. For any time point when machine a begins to be idle, search the machine to be 

firstly idle among machines }1|{ mjbj ≤≤  (any idle machine is naturally the first one; if there 

are more than one such kind of machines, randomly choose one). Let the processing time left to 

process the job on that machine be t . Among all the jobs to be processed, choose the job which has 

the closest first-center processing time to t  (break ties arbitrarily). Suppose that the job chosen is 

job i* and the processing time of job i* on machine a is 1t . If 1tt ≤ , job i* starts to process on 

machine a immediately; otherwise we have 1tt > , thus job i* needs to start to process on machine a 

after 1tt −  waiting time. 

Let ip1  and ip2 ( ni ,...,1= ) be the processing times of job i in the first and second machine 

centers respectively. Then, the algorithm LD can be described in an exact way as below. 

Step 0. Set 0=MA and 0=jMB ( mj ,...,1= ); Set 0=== iii KLJ ( ni ,...,1= ), 

1* =n  and 0=SP . 

Step 1. Set ),0max( MAMBMB jj −= ( mj ,...,1= ) and 0=MA . 

Step 2. Set },...,1|min{arg* mjMBj j == , and set *j
MBt = . 

Step 3. Set },...,1,0||min{|arg 1
* niJtpi ii ==−= , and set *11 ipt =  and 1* =iJ . Set 

*
* iL

n
= , *

* jK
n

= . 

Step 4. Set ),max( 1ttMA =  and ** 2ij
pMAMB += . 

Step 6. Set 1** += nn . If nn =* , go to Step 7; Otherwise set MASPSP +=  and go to 
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Step 1. 

Step 7. Set },...,1|max{ mjMBSPSP j =+=  and stop. 

In the algorithm LD presented above, ),...,1( niLi =  represents for the ordered processing 

list of all the jobs, ),...,1( niKi =  represents for the corresponding machine for the jobs to be 

processed on the second center, and SP  is the makespan. 

For problem F, the computational complexity of algorithm L is )(mnO , and that of both 

algorithm D and algorithm J is )lg( nmnO . 

Theorem 1 For problem F with n  jobs, the computational complexity of algorithm LD is 

)( 2mnO . 

Proof There are n  idle beginning time points for machine a . For each one of them, we 

should determine the machine in the second center, which need )(mO  searching. After that, the job 

of the least deviation processing time can be found in )(nO  time. So the total computational 

complexity is )( 2mnO . 

Besides this, we can sort all the jobs according to their processing times in the first center, 

either in increasing order or decreasing order. Then the jobs can be searched by binary-search 

methods. Thus the average computational time can be reduced. Furthermore, according to advanced 

sorting theory, one can store the jobs in a more complicated data structure, such as binary search tree, 

and thus one can reduce the computational complexity of algorithm LD to )lg( nmnO . 

2   Worst Case Performance Analysis 

As for scheduling problem, the worst case performance is among the most useful performance 

index of a heuristic, which describes the performance of a heuristic in the worst case. For a heuristic 

H, the worst case performance is the ratio of the makespan obtained by H and the optimal solution 

for the worst case instance, which is called tight if there is at least one instance to make the ratio 

hold. 

For problem F, the worst case ratio of algorithm L is m/13 − , and that of algorithm D is 2. 

Both of them are tight [13]. Since algorithm J is a special case of algorithm L, its worst case ratio is 

obviously not larger than m/13 − . 

Theorem 2 For problem F, the worst case ratio of algorithm LD is m/13 − , and it is tight in 

a general sense where some jobs can be processed only in one center. 

Proof Since algorithm LD is a special case of algorithm L, the conclusion that its worst case 

ratio is not larger than m/13 −  can be directly drawn from the result for algorithm L, as was 

proved in [13]. 

For problem F in general sense, some jobs can be processed only in one center. An instance of 
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ratio m/13 −  is given as below. The job set is 

)12(1)({ −−≤≤= mmNiiJJ a , },11)(,11)( dcb JmiiJmiiJ −≤≤−≤≤ , 

and the processing times in both centers are 

[ ])(iJp a = [ ]φε , , )12(1 −−≤≤ mmNi , 

[ ])(iJp b = [ ]L,ε , 11 −≤≤ mi , 

[ ])(iJp c = [ ]Lm )1(, −ε , 11 −≤≤ mi , 

[ ]dJp = [ ]mL,ε . 

Here φ  means the job need not to be processed on that center, ε <<L, and N is an integer 

big enough to make LN =ε . 

 

Fig. 1 Solution with the same makespan as algorithm LD, ε)22()13( −−−= mLmf  

Fig. 2 Optimal solution, εmmLf +=*
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m/23 −  can be shown as below, while whether there exists one with ratio m/13 −  is still open. 

The job set is 

)53(1|)({ −−≤≤= mmNiiJJ a , },21|)(,421|)( dcb JmiiJmiiJ −≤≤−≤≤ , 

and the processing time in both centers is, 

)53(1],,[)]([ −−≤≤= mmNiiJp a εε , 

421],,[)]([ −≤≤= miLiJp b ε , 

21],)2(,[)]([ −≤≤−= miLmiJp c ε , 

],[][ mLJp d ε= . 

L<<ε , and N is an integer big enough to make LN =ε . 

 
Fig. 3 Solution with the same makespan as algorithm LD, ε)63()23( −−−= mLmf  

 

Fig. 4 Optimal solution, εmmLf +=*  
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3    Average Case Performance Analysis 

We evaluated the performance of all the four heuristic for problem F by a large number of 

randomly generated instances. Three cases with 10,5,2=m  were studied, and the processing 

times of the jobs were generated from uniform and normal distributions respectively. 

Let ip1  and ip2  ( ni ,...2,1= ) denote the processing time on both the centers for the jobs.  

For normal distribution, we designed the following instance sets:  

I1: both ip1  and ip2  are from )25,30(N ,  

I2: both ip1  and ip2  are from )100,30(N ,  

I3: ip1  is from )25,30(N  and ip2  is from )25,30( 2mmN ,  

I4:  ip1  is from )100,30(N  and ip2  is from )100,30( 2mmN . 

For uniform distribution, we designed the following instance sets: 

I5: 15,0 21 ≤< ii pp ,  

I6, 30,0 21 ≤< ii pp ,  

I7: 150 1 ≤< ip , mp i 150 2 ≤< ,  

I8: 300 1 ≤< ip , mp i 300 2 ≤< . 

Let nt  denote problems tested in each instance  (Here we have taken nt =100). Let H
rf  

be the makespan, i.e. the maxC , obtained by algorithm H (H=L, D, J, LD) for )8,,2,1( =rI r  

instances, and let 0
rf  be a lower bound of the makespan of )8,,2,1( =rI r  of the optimal 

solution. 

The lower bound 0
rf  of problem F is estimated as 
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Thus, H
rE  (H=L, D, J, LD) indicates the relative performance of algorithms L, D, J and LD 

with respect to the lower bound. The heuristic with the least H
rE  has the closest solution to the 

optimal one, and has the best average performance compared with the others. 
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Table 1 Average performance evaluation of the heuristics 

I n m L D J LD O 
I1 30 2 8.28 14.04 3.09 6.54 J 
I2 30 2 7.15 13.60 2.50 6.84 J 
I3 30 2 22.01 27.13 17.52 15.43 LD 
I4 30 2 21.72 26.65 17.48 16.10 LD 
I5 30 2 17.46 25.22 8.50 11.81 J 
I6 30 2 17.86 26.67 8.40 12.64 J 
I7 30 2 31.58 41.11 21.25 23.12 J 
I8 30 2 30.73 41.12 20.63 19.55 LD 
I1 300 2 5.89 11.01 1.98 6.17 J 
I2 300 2 6.18 10.74 2.03 6.04 J 
I3 300 2 21.52 25.95 18.07 14.24 LD 
I4 300 2 22.11 26.31 18.70 15.25 LD 
I5 300 2 12.36 17.76 5.87 8.42 J 
I6 300 2 11.96 20.54 7.01 9.10 J 
I7 300 2 29.52 38.62 20.61 18.80 LD 
I8 300 2 28.78 38.26 20.60 17.63 LD 
I1 60 5 4.81 9.45 2.25 5.03 J 
I2 60 5 4.43 8.92 2.42 4.67 J 
I3 60 5 34.30 42.31 33.38 28.32 LD 
I4 60 5 34.16 43.27 30.12 27.55 LD 
I5 60 5 7.72 13.61 1.96 6.48 J 
I6 60 5 7.59 14.60 2.16 8.05 J 
I7 60 5 51.39 64.19 40.33 41.18 LD 
I8 60 5 50.11 63.20 37.79 40.86 J 
I1 600 5 3.68 6.83 1.73 3.56 J 
I2 600 5 3.21 6.47 1.79 3.13 J 
I3 600 5 30.15 37.11 28.59 24.07 LD 
I4 600 5 29.17 36.04 29.19 23.55 LD 
I5 600 5 4.90 9.56 1.04 5.15 J 
I6 600 5 5.13 9.80 1.33 4.55 J 
I7 600 5 37.67 51.35 29.56 31.04 J 
I8 600 5 40.71 52.39 31.14 31.50 J 
I1 110 10 3.16 5.85 2.04 2.95 J 
I2 110 10 3.02 5.76 1.89 2.63 J 
I3 110 10 42.62 54.07 41.04 37.86 LD 
I4 110 10 39.98 51.96 40.38 37.42 LD 
I5 110 10 3.78 7.71 1.48 3.77 J 
I6 110 10 4.52 8.03 1.34 4.02 J 
I7 110 10 61.95 75.66 55.04 52.03 LD 
I8 110 10 62.60 78.09 56.37 54.47 LD 
I1 1100 10 2.29 4.32 1.34 2.25 J 
I2 1100 10 2.15 4.26 1.28 2.21 J 
I3 1100 10 35.03 44.05 35.39 30.45 LD 
I4 1100 10 33.98 43.40 33.84 28.79 LD 
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I5 1100 10 2.75 5.18 1.12 2.58 J 
I6 1100 10 3.09 5.57 1.01 2.66 J 
I7 1100 10 48.19 59.92 42.19 39.12 LD 
I8 1100 10 47.95 60.49 44.20 42.30 LD 

The results are shown in Table 1, where m  and n  denote the number of machines in the 

second center and the number of the jobs, respectively. The last column lists the best heuristic among 

the four. 

As shown in Table 1, compared with the ones with processing time of uniform distribution, 

the ones with processing time of normal distribution can be achieved closer makespan to the lower 

bound by the four heuristics discussed in this paper. 

Among the four algorithms, obviously algorithms J and LD are relatively better than the other 

two. While for algorithm L and D, algorithm L is a little better. This result indicates that sorting the 

jobs by the processing time on the second center cannot improve the average performance even 

though it improves the worst case performance. 

Furthermore, one can find a phenomenon for the performance of algorithms J and LD. For the 

cases the processing times in both centers are from the same distribution, i.e. I1, I2, I5, I6, algorithm J 

is better. While for the case the processing time correlates with the number of the machines in each 

center, algorithm LD is the better one. One should pay attention to that, in the real world, generally 

the processing times of the jobs are correlated to the number of machines where those jobs to be 

processed; Otherwise there maybe too many idle time on some machines in the second center. 

4    Conclusions 

For problem |)1,1( 212 >== mmmF no-wait max| C , we put forward the Least Deviation 

algorithm, analyzed its worst case performance, and then showed its efficiency by numerical 

experiments. The Least Deviation algorithm is of low computational complexity and is easy to be 

implemented, thus it is valuable to be used in real world applications.  

Finally, we should point out that the generalization of this algorithm is straightforward to deal 

with the two-stage no-wait hybrid flow-shop scheduling problem with more than one parallel 

machines in both stages. That’s to say, following the similar ideas and steps of the Least Deviation 

algorithm for the problem |)1,1( 212 >== mmmF no-wait max| C , we can design the Least 

Deviation algorithm for the generalized problem |)1,1( 212 >≥ mmF no-wait max| C . In fact, we 

have also conducted numerical experiments for this generalized problem, and the results show that, 

compared with most of the other algorithms, the Least Deviation algorithm is very competitive under 

most of the cases we tested for the problem. 
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